Design and performance evaluation of the "iTIVA" algorithm for manual infusion of intravenous anesthetics based on effect-site target

  • David Eduardo Ramírez Department of Anesthesiology, Universidad del Valle, Cali, Colombia
  • José Andrés Calvache a. Department of Anesthesiology, Universidad del Cauca, Popayan, Colombia. b. Anesthesiology & Biostatistics Department, Erasmus University Medical Centre Rotterdam, The Netherlands
Keywords: Propofol, Pharmacokinetics, Anesthesia, Computer simulation, Infusion pumps.


Introduction: Remifentanil and propofol infusion using TCI pumps has proven to be beneficial for the practice of anesthesia but the availability of these systems is limited.

Objective: Designing a pharmacokinetic model-based algorithm for calculating manual infusion regimens to achieve plasma and effect-site concentrations that may be used in volume infusion pumps, and to compare the difference between the desired and the predicted concentrations via pharmacokinetic simulation.

Methods: Using the Minto & Schnider models for remifentanil and propofol respectively, the algorithm was implemented on an iTIVA application (interactive TIVA) for iOS and Android operating systems. The performance of the algorithm was evaluated estimating the infusion regimens for achieving different effect-site concentrations for induction and maintenance in 34 theoretical patients for 240 min.

Results: The infusion regimens obtained for remifentanil and propofol resulted in less than 5% average systemic deviation versus the target effect-site concentrations during induction and maintenance. Only one induction infusion was required for remifentanil and propofol. Just one infusion rate was required for remifentanil during maintenance, and between 2 and 5 infusion rate changes for propofol to maintain a stable concentration. The iTIVA-based algorithm estimates concentrations similar to the TivaTrainer® software.

Conclusions: The performance of the algorithm to achieve effect-site concentrations during induction and maintenance for remifentanil and propofol was excellent, with a low systemic deviation versus the desired target concentrations.


1. Durieux ME. Anesthetic neurotoxicity: it's not just for children anymore. Anesth Analg. 2010;110:291-2.
2. Struys MM, De Smet T, Mortier EP. Simulated drug administration: an emerging tool for teaching clinical pharmacology during anesthesiology training. Clin Pharmacol Ther. 2008;84:170-1.
3. Muñoz L, Arévalo JJ, Reyes LE, Balaguera CE. Remifentanilo versus propofol con infusión controlada a objetivo en sitio efecto para la sedación de pacientes durante procedimientos endoscópicos gastrointestinales: ensayo clínico controlado aleatorizado. Rev Colomb Anestesiol. 2013;41:114-9.
4. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, et al. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502-16.
5. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10-23.
6. Leslie K, Clavisi O, Hargrove J. Target-controlled infusion versus manually-controlled infusion of propofol for general anaesthesia or sedation in adults. Cochrane Database Syst Rev. 2008:CD006059.
7. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111:368-79.
8. Moerman AT, Herregods LL, De Vos MM, Mortier EP, Struys MM. Manual versus target-controlled infusion remifentanil administration in spontaneously breathing patients. Anesth Analg. 2009;108:828-34.
9. Gómez Oquendo FJ, Casas Arroyave FD, Fernández JM, Guarín Grisales Á. Anestesia total intravenosa en un sistema de lazo cerrado: reporte del primer caso en Colombia. Rev Colomb Anestesiol. 2013;41:306-10.
10. De Castro V, Godet G, Mencia G, Raux M, Coriat P. Target-controlled infusion for remifentanil in vascular patients improves hemodynamics and decreases remifentanil requirement. Anesth Analg. 2003;96:33-8.
11. Hill M, Peat W, Courtman S. A national survey of propofol infusion use by paediatric anaesthetists in Great Britain and Ireland. Paediatr Anaesth. 2008;18:488-93.
12. Muller T, Ludwig A, Biro P. Two distinct application habits for propofol: an observational study. Eur J Anaesthesiol. 2010;27:265-9.
13. Simpson RB, Russell D. Anaesthesia for daycase gynaecological laparoscopy: a survey of clinical practice in the United Kingdom. Anaesthesia. 1999;54:72-6.
14. Minai FN, Siddiqui KM, Qureshi R. Sedation-analgesia in non operative locations: practice trends of anaesthetists. J Pak Med Assoc. 2008;58:84-5.
15. Nora FS, Aguzzoli M, Oliveira Filho GR. Current attitude of anesthesiologists and anesthesiology residents regarding total intravenous anesthesia. Rev Bras Anestesiol. 2006;56:362-9.
16. Drews FA, Syroid N, Agutter J, Strayer DL, Westenskow DR. Drug delivery as control task: improving performance in a common anesthetic task. Hum Factors. 2006;48:85-94.
17. Syroid ND, Agutter J, Drews FA, Westenskow DR, Albert RW, Bermudez JC, et al. Development and evaluation of a graphical anesthesia drug display. Anesthesiology. 2002;96:565-75.
18. Kennedy RR. Seeing the future of anesthesia drug dosing: moving the art of anesthesia from impressionism to realism. Anesth Analg. 2010;111:252-5.
19. Gin T. Clinical pharmacology on display. Anesth Analg. 2010;111:256-8.
20. Guarracino F, Lapolla F, Cariello C, Danella A, Doroni L, Baldassarri R, et al. Target controlled infusion: TCI. Minerva Anestesiol. 2005;71:335-7.
21. Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68:261-6.
22. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008, ISBN 3-900051-07-0 updated 2015 nov 1
23. Lerou JG, Booij LH. Model-based administration of inhalation anaesthesia. 3. Validating the system model. Brit J Anaesth. 2002;88:24-37.
24. Kern SE, Xie G, White JL, Egan TD. A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology. 2004;100:1373-81.
25. Thompson JP, Rowbotham DJ. Remifentanil - an opioid for the 21st century. Brit J Anaesth. 1996;76:341-3.
26. Chang CH, Lee JW, Choi JR, Shim YH. Effect-site concentration of remifentanil to prevent cough after laryngomicrosurgery. Laryngoscope. 2013;123:3105-9.
27. Kim EJ, Shin SW, Kim TK, Yoon JU, Byeon GJ, Kim HJ. The median effective effect-site concentration of remifentanil for minimizing the cardiovascular changes to endotracheal intubation during desflurane anesthesia in pediatric patients. Korean J Anesthesiol. 2012;63:314-20.
28. Lee JY, Yang H, Choi SH, Shin DW, Hong SK, Chun DH. The optimal effect-site concentration of remifentanil to attenuate the pain caused by propofol. Korean J Anesthesiol. 2012;63:108-12.
29. Kwak HJ, Min SK, Kim DH, Kang M, Kim JY. Effect-site concentration of remifentanil for nasotracheal versus orotracheal intubation during target-controlled infusion of propofol. J Int Med Res. 2011;39:1816-23.
30. Lee B, Lee JR, Na S. Targeting smooth emergence: the effect site concentration of remifentanil for preventing cough during emergence during propofol-remifentanil anaesthesia for thyroid surgery. Brit J Anaesth. 2009;102:775-8.
31. Albertin A, Casati A, Federica L, Roberto V, Travaglini V, Bergonzi P, et al. The effect-site concentration of remifentanil blunting cardiovascular responses to tracheal intubation and skin incision during bispectral index-guided propofol anesthesia. Anesth Analg. 2005;101:125-30.
32. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what's available, what's validated and what's next? Brit J Anaesth. 2006;97:85-94.
33. Roberts FL, Dixon J, Lewis GT, Tackley RM, Prys-Roberts C. Induction and maintenance of propofol anaesthesia. A manual infusion scheme. Anaesthesia. 1988;43Suppl:14-7.
How to Cite
Ramírez DE, Calvache JA. Design and performance evaluation of the "iTIVA" algorithm for manual infusion of intravenous anesthetics based on effect-site target. Colomb. J. Anesthesiol. [Internet]. 2016Apr.1 [cited 2021May12];44(2):105–113. Available from:


Download data is not yet available.
How to Cite
Ramírez DE, Calvache JA. Design and performance evaluation of the "iTIVA" algorithm for manual infusion of intravenous anesthetics based on effect-site target. Colomb. J. Anesthesiol. [Internet]. 2016Apr.1 [cited 2021May12];44(2):105–113. Available from: