Changes in the hemodynamic profile when establishing mechanical ventilation in patients with ischemic heart disease and coronary disease: Measurement with thoracic bioreactance

  • Ivon Johanna Rodríguez Intensive Care Unit, Clínica Colombia, Colsanitas, Bogotá D. C., Colombia
  • Juan Carlos Echeverry Intensive Care Unit, Clínica Colombia, Colsanitas, Bogotá D. C., Colombia
  • Mauricio Abello a. Cardiovascular Anesthesia, Clínica Shaio, Bogotá D. C., Colombia. b. Cardiovascular Anesthesia, Universidad El Bosque, Bogotá D. C., Colombia
  • Luis Eduardo Cruz a. Critical Care Unit, Clínica Reina Sofía, Bogotá D. C., Colombia. b. Critical Care Unit, Hospital El Tunal, Bogotá D. C., Colombia
Keywords: Respiration, Coronary, Disease, Pulmonary, Ventilation, Respiratory, System, Anesthesia

Abstract

Breathing affects cardiac output on a cycle-by-cycle basis, through changes in pressure and intrathoracic volume of key components in cardiovascular function Hence, heart–lung interactions affect cardiovascular functioning and the heart’s ability to adapt. The heart–lung interaction is an area of applied physiology broadly studied but in Colombia, this is the first trial ever done with a thoracic bioreactance monitor. The hemodynamic profiles of 38 patients scheduled for myocardial revascularization were measured at the Fundación Clínica Abood Shaio using thoracic bioreactance monitor, which provided ventricular volume and cardiac output measurements. The ventilator volumes and pressures with which corrections were made to interpret the effects of mechanical ventilation were recorded.

References

1. Hernández R, Fernández C, Baptista P. Concepcion o elección del diseño de investigación. In: Metodología de la Investigación. 2 ed. McGraw Hill; 2001. p. 187.
2. Squara P. Bioreactance: a new method for noninvasive cardiac output monitoring. Int J Intensive Care. 2008:87-90. Springer.
3. Putensen C, Wrigge H. Tidal volumes in patients with normal lungs. Anesthesiology. 2007;106:1085-7.
4. Chapin J, Downs J, Douglas M, Murphy E, Ruiz B. Lung expansion, airway pressure transmission, and positive end-expiratory pressure. Arch Surg. 1979;114.
5. Mathews, Singh. Cardiac output monitoring. Ann Cardiac Anaesth. 2008;11:56-68.
6. Marque S, Cariou A, Chiche J, Squara P. Comparison between Flotrac-Vigileo and bioreactance, a totally noninvasive method for cardiac output monitoring. Crit Care. 2009;13, http://dx.doi.org/10.1186/cc.7884.R73.
7. Raval N, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113-9.
8. Cohen AJ, Arnaudov D, Zabeeda D, Schultheis L, Lashinger J, Schachner A. Non-invasive measurement of cardiac output during coronary artery bypass grafting. Eur J Cardiothorac Surg. 1998;14:64-9.
9. DiNardo J, Zvara D. Anesthesia for myocardical revascularization. In: Anesthesia in cardiac surgery. 3 ed. Blackwell; 2008. p. 90.
10. Dueñas C, Jaramillo A. Interacción corazón - pulmón. In: Bogotá DC, editor. Cuidado Crítico Cardiovascular, 15. Sociedad colombiana de cardiología; 2003. p. 241-53.
11. Robotham J. How respiration affects circulation. ASA Refrescher Course; January, 1984. p. 191-202.
12. Pinsky M, Buda A, Ingels N, Daughters G, Stinson E, Alderman E. Effect intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301:453-9.
13. Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005, http://dx.doi.org/10.1186/cc3877.
14. Weisler A, Harris W, Schoenfeld C. Systolic time intervals in heart failure in man. J Circ. 1968;XXXVII:149-59, 2.
15. Cotter G, Williams S, Vered Z, Tan L. Role of cardiac power in heart failure. Curr Opin Cardiol. 2003;18:215-22.
16. Cohen-Solal A, Tabet J, Logeart D, Bourgoin P, Tokmakova M, Dahan M. Non-invasively determined surrogate of cardiac power ("circulatory power") at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J. 2002;23:806-14.
17. Garcia M. Perdidas sanguíneas permisibles, modelo exponencial. Rev Col Anestesiol. 2009;37:255-62.
18. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology. 1975;42:45-55.
19. Reuter DA, Goresch T, Goepfert MS, Wildhirt SM, Kilger E, Goetz AE. Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth. 2004;92:808-13.Epub April 19.
20. Kristensen KK, Ahtarovski KA, Iversen KK, Thomsen C, Vejlstrup NG, Engstrøm T, et al. The decrease of cardiac chamber volumes and output during positive pressure ventilation. Am J Physiol Heart Circ Physiol. 2013, 10.1152.
How to Cite
1.
Rodríguez IJ, Echeverry JC, Abello M, Cruz LE. Changes in the hemodynamic profile when establishing mechanical ventilation in patients with ischemic heart disease and coronary disease: Measurement with thoracic bioreactance. Colomb. J. Anesthesiol. [Internet]. 2014Apr.1 [cited 2021Oct.16];42(2):76 -82. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/521

Downloads

Download data is not yet available.
Published
2014-04-01
How to Cite
1.
Rodríguez IJ, Echeverry JC, Abello M, Cruz LE. Changes in the hemodynamic profile when establishing mechanical ventilation in patients with ischemic heart disease and coronary disease: Measurement with thoracic bioreactance. Colomb. J. Anesthesiol. [Internet]. 2014Apr.1 [cited 2021Oct.16];42(2):76 -82. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/521
Section
Original

More on this topic