Hypocapnia in Neuroanesthesia: Current Situation

  • María E. Solano C. Resident III year Anesthesiology, Universidad del Rosario, Bogotá, Colombia
  • Ichel Castillo B Resident III year Anesthesiology, Universidad de la Sabana, Bogotá, Colombia
  • María C. Niño De Mejía Neuroanesthesiology, Intensivist, Fundación Santa Fe de Bogotá, Bogotá, Colombia
Keywords: Hypocapnia, Anesthesia, Hyperventilation, Carbon dioxide

Abstract

Introduction: Hyperventilation has been a usual maneuver in the management of anesthesia in neurosurgical procedures. A few years back there used to be some medical skepticism about the potential of cerebral ischemia and today we know that it is detrimental and worsens the patient’s condition and prognosis.

Objective: To review the adverse effects of hypocapnia on various organs —mainly the brain— and to identify the current recommendations about its use.

Methodology: We conducted a PubMed literature search using MeSH terminology including the key words. The search was expanded to include a review of several texts and the bibliography of the most relevant articles.

Results: The literature review showed that hypocapnia is harmful for the brain and for other tissues and the current recommendation is to use it for two situations only: in case of imminent herniation and to improve the surgical field, limited to 20 minutes.

Conclusions: Hyperventilation should not be a routine anesthetic intervention for the management of the neurosurgical patient; there must be a precise indication and once the situation is corrected, the intervention must be immediately withdrawn.

References

1. Curley G, Laffey J, Kavanagh B. Bench-to-beside review: Carbon dioxide. Crit Care. 2010;14:220.
2. Laffey J, Kavanagh B. Hypocapnia. N Engl J Med. 2002.
3. Miller R. Miller's Anesthesia. 7.a ed. 2009.
4. Marion D, Puccio A, Wisniewski S. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med. 2002;30:2619-25.
5. Patiño F, Celis E. Fisiología de la respiración e insuficiencia respiratoria aguda. 7.a ed. 2005.
6. Marino P. The UCI book. 3.a ed. Capítulo 2. 2007.
7. Ghajar J, Hariri R, Narayan R. Survey of critical care management of comatose, head-injured patients in the United States. Crit Care Med. 1995;23:560-7.
8. Muizelaar JP, Marmarou A, Ward JD. Adverse effects of prolonged hyperventilation in patients with severe head injury. J Neurosurg. 1991;75:731-9.
9. Stocchetti N, Maas A, Chieregato A. Hyperventilation in head injury. Chest. 2005;127:1812-27.
10. Curley G, Kavanagh B, Laffey J. Hypocapnia and the injured brain: More harm than benefit. Crit Care Med. 2010.
11. Caulfield E, Dutton R, Floccare D. Prehospital hypocapnia and poor outcome after severe traumatic brain injury. J Trauma. 2009;66:1577-83.
12. Carmona Suazo JA, Maas AIR, Van den Brink. CO2 reactivity and brain oxygen pressure monitoring in severe head injury. Crit Care Med. 2000;28:3268-74.
13. Skippen P, Seear M, Poskitt K. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25:1402-9.
14. Marion DW, Spiegel TP. Changes in the management of severe traumatic brain injury: 1991-1997. Crit Care Med. 2000;28:16-8.
15. Neumann JO, Chambers IR, Citerio G. The use of hyperventilation therapy after traumatic brain injury in Europe. Intensive Care Med. 2008;34:1676-82.
16. Curry R, Hollingworth W, Richard G. Incidence of hypo- and hypercarbia in severe traumatic brain injury before and after 2003 pediatric guidelines. Pediatr Crit Care Med. 2008;9:141-6.
17. Brain Trauma Foundation. Use of hyperventilation in the acute management of severe pediatric traumatic brain injury. Pediatr Crit Care Med. 2003;4:45-7.
18. Huizenga JE, Zink B, Maio R. The penetrance of head injury management guidelines into the practice patterns of Michigan emergency physicians. Acad Emerg Med. 2000;7:1171.
19. Ito H, Kanno I, Iida H. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med. 2001;15:111-6.
20. Ito H, Ibaraki Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hipocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2005;25:852-857.
21. Kontos HA, Raper AJ, Patterson JL. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke. 1977;8:358-60.
22. Ozan A. Optimizing the intraoperative management of carbon dioxide concentration. Curr Opin Anaesthesiol. 2006;19:19-25.
23. Domino KB, Emery MJ, Swenson ER, et al. Ventilation heterogeneity is increased in hypocapnic dogs. Respir Physiol. 1998;111:89-100.
24. Nunn JF. Applied respiratory physiology. 3.a ed. London: Butterworths; 1987.
25. Huttunen J, Tolvanen H, Heinonen E, et al. Effects of voluntary hyperventilation on cortical sensoryresponses. Electroencephalographic and magnetoencephalographic studies. Exp Brain Res. 1999;125:248-54.
26. Davis D. Early ventilation in traumatic brain injury. Resuscitation. 2008;76:333-40.
27. Samra SK, Turk P, Arens JF. Effect of hipocapnia on local cerebral glucose utilization in rats. Anesthesiology. 1989;70:523-6.
28. Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568-78.
29. Graham EM, Apostolou M, Mishra OP, Delivoria-Papadopoulos M. Modification of the N-methyl-D-aspartate receptor in the brain of newborn piglets following hyperventilation induced ischemia. Neurosci Lett. 1996;218:29-32.
30. Ikonen RS, Janas MO, Koivikko MJ, Laippala P, Kuusinen EJ. Hyperbilirubinemia, hypocarbia and periventricular leukomalacia in preterm infants. Acta Paediatr. 1992;81:802-7.
31. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high frequency jet ventilation. Pediatrics. 1996;98:918-24.
32. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, et al. High expression of tumour necrosis factor a and interleukin6 in periventricular leukomalacia. Am J Obstet Gynecol. 1997;177:406-11.
33. Gleason CA, Short BL, Jones D. Cerebral blood flow and metabolism during and after prolonged hypocapnia in newborn lambs. J Pediatr. 1989;115:309-14.
34. Narayan RK, Kishore PRS, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor. J Neurosurg. 1982;56:650-9.
35. Marion DW, Darby J, Yonas H. Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg. 1991;74:407-14.
36. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg. 1992;77:360-8.
37. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983;14:294-301.
38. Van Santbrink H, Schouten JW, Steyerberg EW, et al. Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir. 2002;144:1141-9.
39. Graham DI, Lawrence AE, Scott G, et al. Brain damage in fatal non-missile head injury without high intracranial pressure. J Clin Pathol. 1988;41:34-7.
40. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury. J Neurosurg. 1991;75:685-93.
41. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717-23.
42. Raichle ME, Posner JB, Plum F. Cerebral blood flow during and after hyperventilation. Arch Neurol. 1970;23:394-403.
43. Guidelines for the Management of Severe Traumatic Brain Injury 2007. A Joint project of the Brain Trauma Foundation. Journal of Neurotrauma.
44. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36:943-9.
45. Newell DW, Weber JP, Watson R, Aaslid R, Winn HR. Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury. Neurosurgery. 1996;39:35-44.
46. Hovorka J. Carbon dioxide homeostasis and recovery after general anaesthesia. Acta Anaesthesiol Scand. 1982;26: 498-504.
47. Laffey JG, Engelberts D, Duggan M, Veldhuizen R, Lewis JF, Kavanagh B. Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation. Crit Care Med. 2003;31:2634-40.
48. Hisano K, Matsuguchi T, Ootsubo H, Nakagaki O, Tomoike H, et al. Hyperventilation-induced variant angina with ventricular tachycardia. Am Heart J. 1984;108:423-5.
49. Cook PT. The influence on foetal outcome of maternal carbon dioxide tension at caesarean section under general anaesthesia. Anaesth Intens Care. 1984;12: 296-302.
50. Gelb AW, Craen RA, Rao GS, Reddy KRM, Megyesi J, Mohanty B, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? Anesth Analg. 2008;106:585-94.
How to Cite
1.
Solano C. ME, Castillo B I, Niño De Mejía MC. Hypocapnia in Neuroanesthesia: Current Situation. Colomb. J. Anesthesiol. [Internet]. 2012Apr.1 [cited 2021Jan.26];40(2):137-44. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/825

Downloads

Download data is not yet available.
Published
2012-04-01
How to Cite
1.
Solano C. ME, Castillo B I, Niño De Mejía MC. Hypocapnia in Neuroanesthesia: Current Situation. Colomb. J. Anesthesiol. [Internet]. 2012Apr.1 [cited 2021Jan.26];40(2):137-44. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/825
Section
Narrative review

More on this topic