Secondary infections in critically ill patients admitted with COVID-19 in Bogotá, Colombia. Observational cohort study

  • John Jaime Sprockel Díaz a. Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. b. Research Institute, Fundación Universitaria de Ciencias de la Salud. Bogotá, Colombia. https://orcid.org/0000-0002-7021-6769
  • Anngie Liseth Murcia Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. https://orcid.org/0000-0002-5266-1324
  • Ingrid Galeano Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. https://orcid.org/0000-0002-9576-2715
  • Lina Moreno Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. https://orcid.org/0000-0003-1908-5780
  • Hellen Cárdenas Rodríguez Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. https://orcid.org/0000-0001-8678-1191
  • Jhon Edison Parra Subred Integrada de Servicios de Salud del Sur, Intensive Care Unit, Hospital El Tunal. Bogotá, Colombia. https://orcid.org/0000-0002-0362-6223
  • Carlos Alberto Morales Pertuz Subred Integrada de Servicios de Salud del Sur, Infectious Diseases Department, Hospital El Tunal. Bogotá, Colombia.
Keywords: Intensive care unit, Nosocomial infection, Coinfection, Multidrug resistant bacteria, COVID-19, Mortality

Abstract

Introduction: The presence of secondary infections in critically ill patients and antibiotic resistance are often determining factors in the clinical evolution of these patients.

Objective: To describe the pathogens isolated in blood cultures and tracheal secretion cultures in ICU patients with COVID-19 and to evaluate the association between the presence of secondary infections and 60-day mortality.

Methods: Retrospective analytical cohort study conducted in 273 adults admitted to the ICU with COVID-19 at the Subred Integrada de Servicios de Salud del Sur - Hospital El Tunal, Bogotá, Colombia between April and December 2020. Data from records of blood or tracheal secretion cultures were collected . A bivariate analysis was performed using a Cox proportional-hazards regression model to assess the association between the development of secondary infections and 60-day mortality.

Results:  At least one positive blood culture was reported in 96/511 patients (18.8%). Of the 214 blood cultures performed within 48 hours after ICU admission, 7.7% were positive. A total of 127 germs were isolated from blood cultures - mostly gram-negative bacteria (61.4%) - followed by fungi (25.2%). Additionally, 39.5% were multidrug-resistant, and carbapenem resistance was the most common antibiotic resistance pattern (33.3% of all gram-negative bacteria isolates). Finally, in this cohort, the presence of secondary infections was not associated with 60-day mortality (HR: 1.012, 95%CI: 0.721-1.420; p= 0.946).

Conclusions: Although the prevalence of superinfection was moderately high, the prevalence of coinfection was low. Gram-negative bacteria were predominant, and almost one third of the germs were multidrug-resistant.

References

Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses. 2013;7 Suppl 2(Suppl 2):105-13. doi: http//:www.doi.org/10.1111/irv.12089.

MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis. 2018;18(1):637. doi: http//:www.doi.org/10.1186/s12879-018-3548-0.

Zahariadis G, Gooley TA, Ryall P, Hutchinson C, Latchford MI, Fearon MA, et al. Risk of ruling out severe acute respiratory syndrome by ruling in another diagnosis: variable incidence of atypical bacteria coinfection based on diagnostic assays. Can Respir J. 2006;13(1):17-22. doi: http//:www.doi.org/10.1155/2006/862797.

Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13(9):752-61. doi: http//:www.doi.org/10.1016/S1473-3099(13)70204-4.

Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81(2):266-275. doi: http//:www.doi.org/10.1016/j.jinf.2020.05.046.

Giacobbe DR, Battaglini D, Ball L, Brunetti I, Bruzzone B, Codda G, et al. Bloodstream infections in critically ill patients with COVID-19. Eur J Clin Invest. 2020;50(10):e13319. doi: http//:www.doi.org/10.1111/eci.13319.

Ippolito M, Simone B, Filisina C, Catalanotto FR, Catalisano G, Marino C, et al. Bloodstream Infections in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Microorganisms. 2021;9(10):2016. doi: http//:www.doi.org/10.3390/microorganisms9102016.

Ippolito M, Misseri G, Catalisano G, Marino C, Ingoglia G, Alessi M, et al. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2021;10(5):545. doi: http//:www.doi.org/10.3390/antibiotics10050545.

Bardi T, Pintado V, Gomez-Rojo M, Escudero-Sanchez R, Azzam Lopez A, Diez-Remesal Y, et al. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome. Eur J Clin Microbiol Infect Dis. 2021;40(3):495-502. doi: http//:www.doi.org/10.1007/s10096-020-04142-w.

Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-535. doi: http//:www.doi.org/10.1038/s41423-020-0402-2.

De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):3434. doi: http//:www.doi.org/10.1038/s41467-020-17292-4.

Mahmoudi S, Rezaei M, Mansouri N, Marjani M, Mansouri D. Immunologic Features in Coronavirus Disease 2019: Functional Exhaustion of T Cells and Cytokine Storm. J Clin Immunol. 2020;40(7):974-976. doi: http//:www.doi.org/10.1007/s10875-020-00824-4.

Mędrzycka-Dąbrowska W, Lange S, Zorena K, Dąbrowski S, Ozga D, Tomaszek L. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients-A Scoping Review. J Clin Med. 2021;10(10):2067. doi: http//:www.doi.org/10.3390/jcm10102067.

Pasero D, Cossu AP, Terragni P. Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19. Microorganisms. 2021;9(8):1773. doi: http//:www.doi.org/10.3390/microorganisms9081773.

Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-32. doi: http//:www.doi.org/10.1016/j.ajic.2008.03.002.

Elzi L, Babouee B, Vögeli N, Laffer R, Dangel M, Frei R, et al. How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: a prospective study with 654 patients. Clin Microbiol Infect. 2012;18(9):E355-61. doi: http//:www.doi.org/10.1111/j.1469-0691.2012.03964.x.

World Medical Association (WMA). WMA Declaration of Helsinki – Ethical principles for medical research involving human subjects. Fortaleza: 64th WMA General Assembly; 2013.

Chong WH, Saha BK, Ananthakrishnan Ramani A, Chopra A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection. 2021;49(4):591-605. doi: http//:www.doi.org/10.1007/s15010-021-01602-z.

Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, et al. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019-June 2021). Antimicrob Resist Infect Control. 2022;11(1):45. doi: http//:www.doi.org/10.1186/s13756-022-01085-z.

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. doi: http//:www.doi.org/10.1016/S1473-3099(17)30753-3.

Despotovic A, Milosevic B, Cirkovic A, Vujovic A, Cucanic K, Cucanic T, et al. The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics (Basel). 2021;10(10):1146. doi: http//:www.doi.org/10.3390/antibiotics10101146.

Pintado V, Ruiz-Garbajosa P, Escudero-Sanchez R, Gioia F, Herrera S, Vizcarra P, et al. Carbapenemase-producing Enterobacterales infections in COVID-19 patients. Infect Dis (Lond). 2022;54(1):36-45. doi: http//:www.doi.org/10.1080/23744235.2021.1963471.

Polly M, de Almeida BL, Lennon RP, Cortês MF, Costa SF, Guimarães T. Impact of the COVID-19 pandemic on the incidence of multidrug-resistant bacterial infections in an acute care hospital in Brazil. Am J Infect Control. 2022;50(1):32-8. doi: http//:www.doi.org/10.1016/j.ajic.2021.09.018.

Ayoub Moubareck C, Hammoudi Halat D. The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens. Front Cell Infect Microbiol. 2022;12:823626. doi: http//:www.doi.org/10.3389/fcimb.2022.823626.

Ramanan M, Burrell A, Paul E, Trapani T, Broadley T, McGloughlin S, et al. Nosocomial infections amongst critically ill COVID-19 patients in Australia. J Clin Virol Plus. 2021;1(4):100054. doi: http//:www.doi.org/10.1016/j.jcvp.2021.100054.

Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Patient characteristics, clinical course and factors associated to ICU mortality in critically ill patients infected with SARS-CoV-2 in Spain: A prospective, cohort, multicentre study. Rev Esp Anestesiol Reanim (Engl Ed). 2020;67(8):425-37. doi: http//:www.doi.org/10.1016/j.redar.2020.07.003.

Silva DL, Lima CM, Magalhães VCR, Baltazar LM, Peres NTA, Caligiorne RB, et al. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J Hosp Infect. 2021;113:145-154. doi: http//:www.doi.org/10.1016/j.jhin.2021.04.001.

Baskaran V, Lawrence H, Lansbury LE, Webb K, Safavi S, Zainuddin NI, et al. Co-infection in critically ill patients with COVID-19: an observational cohort study from England. J Med Microbiol. 2021; 70(4):001350. doi: http//:www.doi.org/10.1099/jmm.0.001350.

How to Cite
1.
Sprockel Díaz JJ, Murcia AL, Galeano I, Moreno L, Cárdenas Rodríguez H, Parra JE, et al. Secondary infections in critically ill patients admitted with COVID-19 in Bogotá, Colombia. Observational cohort study. Colomb. J. Anesthesiol. [Internet]. 2024 Mar. 12 [cited 2024 Jul. 25];52(3). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/1105

Downloads

Download data is not yet available.
Published
2024-03-12
How to Cite
1.
Sprockel Díaz JJ, Murcia AL, Galeano I, Moreno L, Cárdenas Rodríguez H, Parra JE, et al. Secondary infections in critically ill patients admitted with COVID-19 in Bogotá, Colombia. Observational cohort study. Colomb. J. Anesthesiol. [Internet]. 2024 Mar. 12 [cited 2024 Jul. 25];52(3). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/1105
Section
Original

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code

Some similar items: