Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative?

  • Juan Martín Betancur-Calderón a. Fundación Universitaria Autónoma de las Americas, Pereira, Colombia. b. General Practitioner, Colombian Nacional, Pereira, Colombia
  • Luz Amaya Veronesi-Zuluaga First-year Resident of Internal Medicine, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
  • Héctor Fabio Castario-Tobón a. Fundación Universitaria Autónoma de las Americas, Pereira, Colombia. b. Anaesthesiology Service and Intensive Care Unit, Hospital Universitario San Jorge, Pereira, Colombia.
Keywords: Intracranial hypertension, Lactic acid, Basal metabolism, Traumatic brain injuries, Prognosis



Traumatic brain injury (TBI) is one of the most common neurological disorders at the present time. The consequences are so devastating that up to 39% of the patients die from trauma and 60% of the survivors will have cognitive and/or motor deficits.


To analyse the current evidence on the management of severe traumatic brain injury and the clinical outcome achieved with the use of hypertonic sodium lactate.


A search of the scientific literature was conducted in the EMBASE, PubMed/Medline, OVID and Science Direct databases with the aim of preparing a reflection article, using the words "traumatic brain injury", "hypertonic sodium lactate", "metabolism in brain injury", "management of traumatic brain injury", focusing on the potential benefits of hypertonic sodium lactate, regardless of the date of publication.


The use of hypertonic sodium lactate has been shown to have a successful impact on the dismal prognosis of TBI, modulating intracranial hypertension and cerebral oxidative metabolic dysfunction. This has been proven in vitro, in animal models, and in humans.


Efforts to find better clinical outcomes in patients with TBI have confirmed the need for new management alternatives supported by the understanding of the pathophysiology. Given its multiple modulating endocrine-metabolic effects on secondary injury, lactate has been found to be a promising therapy in the management of TBI.


1. Marshall S, Bayley M, McCullagh S, Velikonja D, Berrigan L. Clinical practice guidelines for mild traumatic brain injury and persistent symptoms. Can Fam Physician. 2012;58:257-67.

2. Dinsmore J. Traumatic brain injury: an evidence-based review of management. Contin Educ Anaesth Crit Care Pain. 2013;13:189-95.

3. Carpenter KL, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:1-15.

4. Haddad S, Arabi Y. Critical care management of severe traumatic brain injury in adults. Emerg Med. 2012;20:1-15.

5. Rosenfeld J, Maas A, Bragge P, Morganti-Kossmann MC\, Manley Y, Gruen R. Early management of severe traumatic brain injury. Lancet. 2012;380:1088-98.

6. Helmy A, Vizcaychipi M, Gupta AK. Traumati brain injury: Intensive care management. Br J Anaesth. 2007;99:32-42.

7. Rubiano AM, Tejada PA, Domingo J. Para el diagnóstico y tratamiento de pacientes adultos con trauma craneoencefálico severo. Sistema General de Seguridad Social en Salud. Ministerio de Salud y Protección Social-Colciencias. 2014;30:35-50.

8. Guzmán F, Moreno MC, Montoya A. Evolución de los pacientes con trauma craneoencefálico en el Hospital Universitario del Valle: Seguimiento a 12 meses. Colomb Méd. 2008;39:25-8.

9. Guzmán F. Physiopathology of traumatic brain injury. Colomb Méd. 2009;39:78-84.

10. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35-43.

11. Carron SF, Alwis DS, Rajan R. Traumatic brain injury and neuronal functionality changes in sensory cortex. Front Syst Neurosci. 2016;2:47.

12. Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;16:30147-9.

13. Frattalone AR, Ling GS. Moderate and severe traumatic brain injury: Pathophysiology and management. Neurosurg Clin NAm. 2013;24:309-19.

14. Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosciences. 2013;18:222-34.

15. Oddo M, Levine J, Frangos S, Maloney-Wilensk E, Carrera E, Daniel R, et al. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43:1418-21.

16. Elf K, Nilsson P, Enblad P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med.2002;30:2129-34.

17. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br JAnaesth. 2007;99:4-9.

18. Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6:1307-15.

19. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai JMed. 2009;76:97-104.

20. Verweij BH, Amelink GJ, Muizelaar JP. Current concepts of cerebral oxygen transport and energy metabolism after severe traumatic brain injury. Prog Brain Res. 2007;161:111-24.

21. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, et al. Characterization of cerebral hemodynamic phases following severe head trauma: Hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87:9-19.

22. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24:7-45.

23. Myburgh JA. An appraisal of the impact of management guidelines in traumatic brain injury. Crit Care Resusc. 1999;1:55-62.

24. Randall C. Guidelines for the management of severe head injury: What we know and what we think we know. J Trauma. 1997;42:19-22.

25. Mangat HS, Chiu YL, Gerber LM, Alimi M, Ghajar J, Hartl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;22:202-10.

26. Stein S, Georgoff P, Meghan S. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg. 2010;112:1105-12.

27. Farahvar A, Gerber L, Chiu Y, Carney N, Hartl R, Ghajar J. Response to intracranial hypertension treatment as a predictor of death in patients with severe traumatic brain injury. J Neurosurg. 2011;114:1471-8.

28. Miller JD, Becker DP, Ward JD. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47:503-16.

29. Balestreri M, Czosnyka M, Hutchinson P. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury neurocrit. Care. 2006;4:8-13.

30. Marmarou A, Saad A, Aygok G, Rigsbee M. Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: Correlation to outcome. Acta Neurochir. 2005;95:277-80.

31. Jiang JY, Gao GY, Li WP, Yu MK, Zhu C. Early indicators of prognosis in 846 cases of severe traumatic brain injury. J Neurotrauma. 2002;19:869-74.

32. Aramendi I, Manzanares W, Biestro A. Lactato de sodio 0,5 molar: ¿El agente osmótico que buscamos? Med Intensiva. 2016;40:113-7.

33. Grande P. The "Lund Concept" for the treatment of severe head trauma - physiological principles and clinical application. Intensive Care Med. 2006;32:1475-84.

34. Chowdhury T, Cappellani RB, Schaller B, Daya J. Role of colloids in traumatic brain injury: Use or not to be used? J Anaesthesiol Clin Pharmacol. 2013;29:299-302.

35. Van Aken HK, Kampmeier TG, Ertmer C, Westphal M. Fluid resuscitation in patients with traumatic brain injury: What is a SAFE approach? CurrOpin Anesthesiol. 2012;25:563-5.

36. Alvis-Miranda HR, Castellar-Leones SM, Moscote-Salazar LR. Intravenous fluid therapy in traumatic brain injury and decompressive craniectomy. Bull Emerg Trauma. 2014;2:3-14.

37. Hays AN, Lazaridis C, Neyens R, Nicholas J, Gay S, Chalela JA, Osmotherapy:. Use among neurointensivists. Neurocrit Care. 2011;14:222-8.

38. Berger-Pelleiter E, Émond M, Lauzier F, Shields JF, Turgeon AF. Hypertoni saline in severe traumatic brain injury: A systematic review and meta-analysis of randomized controlled trials. CJEM. 2016;18:112-20.

39. Mannino C, Glenn TC, Hovda DA, Vespa PM, McArthur DL, van Horn JD, et al. Acute glucose and lactate metabolism are associated with cognitive recovery following traumatic brain injury. J Neuro Res. 2017:1-6.

40. Wright MJ, McArthur DL, Alger JR, van Horn J, Irimia A, Filippou M, et al. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury. Brain Imaging Behav. 2013;7:307-15.

41. Holloway R, Zhou Z, Harvey HB, Levasseur JE, Holloway R, Sun D, et al. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat R. Acta Neurochir. 2007;149:919-27.

42. Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate and its many faces. Eur J Paediatr Neurol. 2016;20:3-10.

43. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994;91:10625-9.

44. Álvarez JA. Evaluación fisiológica del lactato como marcador bioquímico utilizado para indicar la intensidad del ejercicio [tesis]. Bogotá: Universidad Nacional de Colombia; 2014. p. 94.

45. Vespa PM, McArthur D, O'Phelan K, Glenn T, Etchepare M, Kelly D, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: A microdialysis study. J Cereb Blood Flow Metab 2003;23:865-77.

46. Nalos M, Tang B, Nanan R. Is lactate the new panacea for endothelial dysfunction? Critical Care. 2014;18:614-5.

47. Fontaine E, Orban J, Ichai C. Hyperosmolar sodium-lactate in the ICU: Vascular filling and cellular feeding. Critic Care. 2014;18:599-600.

48. Glenn TC, Martin NA, Horning MA, Mcarthur DL, Hovda DA, Vespa P, et al. Lactate: Brain fuel in human traumatic brain injury: A comparison with normal healthy control subjects. J Neurotrauma. 2014;32:820-32.

49. Alessandr B, Schwandt E, Kamada Y, Nagata M, Gheimann A, Kempski O, et al. The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats. J Neurotrauma. 2012:2181-91.

50. Berthet C, Castillo X, Magistretti PJ, Hirt L. A new evidence of neuroprotection by lactate after transient focal cerebral ischaemia: Extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis. 2012;34:329-35.

51. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1780-9.

52. Quintard H, Patet C, Zerlauth JB, Suys T, Bouzat P, Pellerin L, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33:681-7.

53. Van Hall G, Str0mstad M, Rasmussen P, Jans 0, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. J Cerebr Blood Flow Metab. 2009;29:121-9.

54. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13c nuclear magnetic resonance spectroscopy. J Neurosci. 2010;30:983-91.

55. Patet C, Suys T, Carteron L, Oddo M. Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neuro Sci Rep. 2016;16:31.

56. Bouzat P, Sala N, Suys T, Zerlauth YB, Marques-Vidal P, FeihlF, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40:412-21.

57. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810-23.

58. Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate: A preferred fuel for human brain metabolism in vivo. Eur J PaediatrNeurol. 2016;20:3-10.

59. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724-38.

60. Wagner F, Radermacher P, Morimatsu H. Hypertonic lactate solutions: A new horizon for fluid resuscitation? Intensive Care Med. 2008;34:1749-51.

61. Rice AC, Zsoldos R, Chen T, Wilson MS, Alessandri B, Hamm RJ, et al. Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res. 2002;928(1-2):156-9.

62. Sala N, Suys T, Zerlauth JB, Bouzat P, Messerer M, Bloch J, et al. Cerebral extracellular lactate increase is predominantly non ischemic in patients with severe traumati brain injury. J Cereb Blood Flow Metab. 2013;33:1815-22.

63. Ichai C, Payen JF, Orban JC, Quintard H, Roth H, Legrand R, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: A randomized controlled trial. Intensive Care Med. 2013;39:1413-22.

64. Ichai C, Armando G, Orban JC, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain injured patients. Intensive Care Med. 2009;35:471-9.

65. Santry HP, Alam HB. Fluid resuscitation: Past, present and the future. Shock. 2010;33:229-41.
How to Cite
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castario-Tobón HF. Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative?. Colomb. J. Anesthesiol. [Internet]. 2017Oct.1 [cited 2022Jan.20];45(Supplement):51-7. Available from:


Download data is not yet available.
How to Cite
Betancur-Calderón JM, Veronesi-Zuluaga LA, Castario-Tobón HF. Traumatic brain injury and treatment with hypertonic sodium lactate. Will it become the best management alternative?. Colomb. J. Anesthesiol. [Internet]. 2017Oct.1 [cited 2022Jan.20];45(Supplement):51-7. Available from:

More on this topic