Mechanical ventilation in SARS-CoV-2 patients: state of art

  • Diana Ávila Reyes a. Critical Medicine and Intensive Care Research Group (GIMCCI), Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-7140-5046
  • Bayron David García P. Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0003-4247-010X
  • Guillermo Salazar Gutierrez Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-6345-6003
  • José Fernando Gómez González a. Critical Medicine and Intensive Care Research Group (GIMCCI), Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0002-2789-314X
  • David Ricardo Echeverry Piedrahita a. Critical Medicine and Intensive Care Research Group (GIMCCI), Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0002-3845-9955
  • Juan Camilo Galvis a. Critical Medicine and Intensive Care Research Group (GIMCCI), Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Graduate Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-9826-8598
  • Mateo Aguirre-Flórez a. Critical Medicine and Intensive Care Research Group (GIMCCI), Universidad Tecnológica de Pereira. Pereira, Colombia. b. School of Health Sciences, Medical Program. Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0003-0365-562X
Keywords: SARS-CoV-2, Coronavirus, Acute respiratory distress syndrome, Critical care, Mechanical ventilation, SARS

Abstract

COVID-19-associated infection leads to a pathology of yet unknown clinical behavior, confronting the clinician with various challenges. An extensive search was conducted based on review articles on SARS-CoV-2 infection and studies including mechanical ventilation management strategies in order to complete this narrative review. Evidenced-based treatment for SARS-CoV2 infection is still in the works. We have some tools from our knowledge from past experiences indicating that a step-wise management approach should be used, without neglecting other joint therapeutic measures for improved clinical outcomes of a condition with a high mortality. The current recommendations indicate that patients with severe acute respiratory failure due to SARS-CoV-2 should be managed with protective mechanical ventilation measures. No strong evidence is yet available on the individualization of mechanical ventilation therapy according to phenotypes.

References

Spina S, Marrazzo F, Migliari M, et al. The response of Milan’s Emergency Medical System to the COVID-19 outbreak in Italy. Lancet. 2020;395:e49-50. doi: http://dx.doi.org/10.1016/s0140-6736(20)30493-1.

Team NCPERE. Vital surveillances: the epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) – China. China CDC Weekly. 2020;2(8):113-22. doi: https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020:102433. doi: https://doi.org/10.1016/j.jaut.2020.102433

Wax R, Christian M. Practical Recommendations for Critical Care and Anesthesiology Teams Caring for Novel Coronavirus (2019-nCoV) Patients. Can J Anaesth. 2020;67(5):568-76. doi: https://doi.org/10.1007/s12630-020-01591-x

Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. doi: https://doi.org/10.1093/cid/ciaa270

Wei-jie Guan, Zheng-yi Ni, Yu Hu, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382:1708-20. doi: https://doi.org/10.1056/NEJMoa2002032

Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China. JAMA. 2020;323:1061-9. doi: https://doi.org/10.1001/jama.2020.1585.

Ranieri VM, Rubenfeld G, Thompson T, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33. doi: https://doi.org/10.1001/jama.2012.5669

Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not?. Critical Care 2020;24:154. doi: https://doi.org/10.1186/s13054-020-02880-z

Hassan K, Mandeep R Mehra. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405–7. doi: https://doi.org/10.1016/j.healun.2020.03.012

Copin MC, Parmentier E, Duburcq T, et al.Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46(6):1124-6. doi: https://doi.org/10.1007/s00134-020-06057-8.

Bellani G, Laffey J, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788-800. doi: https://doi.org/10.1001/jama.2016.0291

Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. doi: https://doi.org/10.1001/jamainternmed.2020.0994

Katzenstein AL, Bloor C, Leibow A. Diffuse Alveolar Damage- The Role of Oxygen, Shock, and Related Factors. Am J Pathol. 1976;85(1):209–28.

Lorente J, Cardinal P, Muñoz D, et al.Acute respiratory distress syndrome in patients with and without diffuse alveolar damage: an autopsy study. Intensive Care Med. 2015;41(11):1921-30. doi: https://doi.org/10.1007/s00134-015-4046-0.Epub 2015 Sep 18

Zang H, Zhou P, Wei Y, et al. Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Annals of Internal Medicine. 2020;172(9):629-632. doi: https://doi.org/10.7326/M20-0533

Joly B, Siguret V, Veyradier. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020;46:1603–6. doi: https://doi.org/10.1007/s00134-020-06088-1

Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Medicine. 2020;46:1099–1102. doi: https://doi.org/10.1007/s00134-020-06033-2.

Jain A, Doyle J. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med. 2020;46:1494–5. doi: https://doi.org/10.1007/s00134-020-06083-6

Vincent JL, Taccone F. Understanding pathways to death in patients with COVID-19. Lancet. 2020;8(5):430-2. doi: https://doi.org/10.1016/S2213-2600(20)30165-X

Patel B, Kress J, Hall J. Alternatives to Invasive Ventilation in the COVID-19 Pandemic. JAMA. 2020;324(1):43-44. doi: https://doi.org/10.1001/jama.2020.9611

Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud. Recomendaciones basadas en consenso de expertos e informadas en la evidencia. Infectio. 2020;24:3.

Gómez C, Peñuelas O. Lujan M, el al. Documento de consenso. Recomendaciones de consenso respecto al soporte respiratorio no invasivo en el paciente adulto con insuficiencia respiratoria aguda secundaria a infección por SARS-CoV-2. Medintensiva. 2020;44(7):429-38. doi: https://doi.org/10.1016/j.medin.2020.03.005

Shang Y, Pan Chun, Yang X. Management of critically ill patients with COVID-19 in ICU: statement from front‑line intensive care experts in Wuhan, China. Ann Intensive Care. 2020;10:73. doi: https://doi.org/10.1186/s13613-020-00689-1

Guía de la OPS para el cuidado crítico de pacientes adultos graves con coronavirus (COVID-19) en las Américas. 2020. [Citado 23 Agosto 2020]. Disponible en: https://www.paho.org/col/index.php?option=com_docman&view=download&alias=2295-guias-covid-19-cuidado-critico-abril-2020-abril-version-larga-v1&category_slug=covid-19&Itemid=688

Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020;55:2000892. doi: https://doi.org/10.1183/13993003.00892-2020.

Thompson A, Ranard B, Wei Y, et al. Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure. JAMA Intern Med. 2020;180(11):1537–9. doi: https://doi.org/10.1001/jamainternmed.2020.3030

Tobin M, Laghi F, Jubran A. Caution about early intubation and mechanical ventilation in COVID-19. Ann Intensive Care. 2020;10:78 https://doi.org/10.1186/s13613-020-00692-6

Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet. 2020;8(5):506-17. doi: https://doi.org/10.1016/S2213-2600(20)30161-2

Cook TM, Boghdadly K, McGuire B, et al. Consensus guidelines for managing the airway in patients with COVID-19: Guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. Anaesthesia. 2020;75(6):785-99. doi: https://doi.org/10.1111/anae.15054.

Goldowitz I. Unusual characteristics of COVID-19: "happy hypoxemics". 2020. [Citado 23 agosto, 2020]. Disponible en: https://www.researchgate.net/post/Unusual_characteristics_of_COVID-19_happy_hypoxemics

Yoshida T, Grieco D, Brochard L, et al. Patient self-inflicted lung injury and positive end- expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care. 2020;26(1):59-65. doi: https://doi.org/10.1097/MCC.0000000000000691

Manejo clínico del COVID-19: atención hospitalaria. Gobierno de España, Ministerio de Sanidad. 2020. Disponible https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Protocolo_manejo_clinico_ah_COVID-19.pdf

Murthy S. Gomersall C, Fowler R, et al. Care for Critically Ill Patients With COVID-19. JAMA. 2020;323(15):1499-500. doi: https://doi.org/10.1001/jama.2020.3633

Wunsch H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. Am J Respir Crit Care Med. 2020;202(1):1–21. doi: https://doi.org/10.1164/rccm.202004-1385ED

Constatin JM, Jabaudon M, Lefrant JY, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet. 2019. doi: https://doi.org/10.1016/S2213-2600(19)30138-9

Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann. Intensive Care. 2019;9:69. doi: https://doi.org/10.1186/s13613-019-0540-9

Silvio A Ñamendys-Silva. Respiratory support for patients with COVID-19 infection. Lancet. 2020;8(4):E18. doi: https://doi.org/10.1016/S2213-2600(20)30110-7

Aoyama H, Uchida K, Aoyama K, et al. Assessment of Therapeutic Interventions and Lung Protective Ventilation in Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis. JAMA Netw Open. 2019;2(7):e198116. doi: https://doi.org/10.1001/jamanetworkopen.2019.8116

Weiss CH, M.cSparron J, Chatterjee R, et al. Summary for clinicians: mechanical ventilation in adult patients with acute respiratory distress syndrome clinical practice guideline. Ann Am Thorac Soc. 2017;14(8):1235–8. doi: https://doi.org/10.1513/AnnalsATS.201704-332CME

Girardis M, B.usani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU randomized clinical trial. JAMA. 2016;18;316(15):1583-9. doi: https://doi.org/10.1001/jama.2016.11993

Walkey AJ, Del Sorbo L, Hodgson C, et al. Higher PEEP versus lower PEEP strategies for patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supp 4):S297-303. doi: https://doi.org/10.1513/AnnalsATS.201704-338OT

Durante G, Turco M, Rustichini L, et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Resp Critc Care Med. 2002;165:1271-4. doi: http://dx.doi.org/10.1164/rccm.2105050

Carrasco R, Villamizar G, Fernández M. Ventilator-Induced Lung Injury (VILI) in Acute Respiratory Distress Syndrome (ARDS): Volutrauma and Molecular Effects. Open Respir Med J. 2015;9:112-9. doi: https://doi.org/10.2174/1874306401509010112

Bein T, Grasso S, Moerer O, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42:699–711. doi: https://doi.org/10.1007/s00134-016-4325-4

Rittayamai N, Katsios C, Beloncle F, et al. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest. 2015;148(2):340-55. doi: https://doi.org/10.1378/chest.14-3169

Chacko B, Peter J, Tharyan P, et al. Pressure‐controlled versus volume‐controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Systematic Review. 2015. doi: https://doi.org/10.1002/14651858.CD008807.pub2

Chica-Meza C. Peña L, Villamarín H, et al. Cuidado respiratorio en COVID-19. Acta Colomb Cuid Intensivo. 2020;20(2):108-17. doi: https://doi.org/10.1016/j.acci.2020.04.001

Carter C. Osborn M, Agagah G, et al. COVID-19 Disease: invasive ventilation. Clinics in Integrated Care. 2020;1:100004. doi: https://doi.org/10.1016/j.intcar.2020.100004

Fan E. Beitler J, Brochard L, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?. The Lancet Respiratory Medicine. 2020;8(8):816-21. doi: https://doi.org/10.1016/S2213-2600(20)30161-2

Griffiths M. McAuley D, Perkins G, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Resp Res. 2019;6:e000420. doi: https://doi.org/10.1136/bmjresp-2019-000420

Guerin C, Reignier J, Richard JC, et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159-68. doi: https://doi.org/10.1056/NEJMoa1214103

Park SY, Kim H, Yoo K, et al. The efficacy and safety of prone positioning in adults patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. J Thorac Dis. 2015;7(3):356–67. doi: https://doi.org/10.3978/j.issn.2072-1439.2014.12.49

Fan, E, Del Sorbo L, Goligher E, et al. An Official American Thoracic Society/European Society of intensive Care Medicine/Society of Critical Care Medicine Clinical practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253-63. doi: https://doi.org/10.1164/rccm.201703-0548ST.

Gattinoni L, Taccone P, Carlesso E, et al. Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. Am J Respir Crit Care Med. 2013;188(11):1286–93. doi: https://doi.org/10.1164/rccm.201308-1532CI

Rodríguez R, Ordoñez S, Gómez J, et al. Prone position in the Acute Respiratory Distress Syndrome, physiology to clinical practice. Medicas UIS 2016;29(2). doi: http://dx.doi.org/10.18273/revmed.v29n2-2016008

Bhatnagar V, Jinjil K, Dwivedi D, et al. Cardiopulmonary Resuscitation: Unusual Techniques for Unusual Situations. J Emerg Trauma Shock. 2018;11(1):31–7. doi: https://doi.org/10.4103/JETS.JETS_58_17

Elharrar X, Trigui Y, Dols A, et al. Use of Prone Positioning in Nonintubated Patients With COVID-19 and Hypoxemic Acute Respiratory Failure. JAMA. 2020;323(22):2336-8. doi: https://doi.org/10.1001/jama.2020.8255

Weiss T, Cerda F, Scott B, et al. Positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: a retrospective observational cohort study. British Journal of Anaesthesia. 2021;126(1):48-55. doi: https://doi.org/10.1016/j.bja.2020.09.042

Guo L, Xie J, Huang Y, et al. Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: a systematic review and meta-analysis. BMC Anesthesiology. 2018;18:172. doi: https://doi.org/10.1186/s12871-018-0631-4

Gattinoni L. Preliminary observations on the ventilatory management of ICU COVID-19 patients. 2020. [Citado 23 agosto, 2020]. Disponible en: https://www.pedsanesthesia.org/wp-content/uploads/2020/03/Ventilator-Management_Covid-19-ICU-EXPERT-OPINION-Gattinoni.pdf

Taylor B, Bernard G. Lower Tidal Volume / Higher PEEP Reference Card for ARMA and ALVEOLI Studies. Crit Care Clin. 2011;27(3):459-68. doi: https://doi.org/10.1016/j.ccc.2011.05.011

Ortiz G, Dueñas C, Garay M, et al. Consenso Colombiano de SDRA. Acta Colomb Cuid Intensivo. 2020; 20:200-52. doi: https://doi.org/10.1016/j.acci.2020.03.001

Furyk, J. What are the effects of recruitment maneuvers for adults with acute respiratory distress syndrome receiving mechanical ventilation?. Cochrane Clinical Answers. 2017. doi: https://doi.org/10.1002/cca.1606

Kang H, Yang H, Tong Z. Recruitment maneuvers for adults with acute respiratory distress syndrome receiving mechanical ventilation: a systematic review and meta-analysis. J Crit Care. 2019;50:1-10. doi: https://doi.org/10.1016/j.jcrc.2018.10.033.

Algaba A, Nin N, GT-IRA of the SEMICYUC, et al. Alveolar recruitment maneuvers in respiratory distress syndrome. Med Intensiva. 2013;37(5):355-62. doi: https://doi.org/10.1016/j.medine.2013.01.006

Pelosi P, Gama de Abreu M, Rocco PR. New and conventional strategies for lung recruitment in acute respiratory distress syndrome. Crit Care. 2010;14:210. doi: https://doi.org/10.1186/cc8851

Grasso S, Mascia L, Del Turco M, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96:795-802.

Guerin C, Debord S, Leray V, et al. Efficacy and safety of recruitment maneuvers in acute respiratory distress syndrome. Ann Intensive Care. 2011;1:9. doi: https://doi.org/10.1186/2110-5820-1-9

Villagrá A, Ochagavía A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:165-70. doi: https://doi.org/10.1164/ajrccm.165.2.2104092

Kacmarek RM, Villar J. Lung recruitment maneuvers during acute respiratory distress syndrome: is it useful. Minerva Anestesiol. 2011;77:85-9.

Girgis K, Hamed H, Khater Y, et al. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51:1132-9.

Borges JB, Okamoto VN, Matos GF, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174:268-78.

Pan C. Lung Recruitability in COVID-19–associated Acute Respiratory Distress Syndrome: A Single-Center Observational Study. Am J Respi Crit Care Med. 2020;201(10):1294-7. doi: https://doi.org/10.1164/rccm.202003-0527LE

Papazian L, Forel JM, Gacouin A, et al. ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;6;363(12):1107-16. doi: https://doi.org/10.1056/NEJMoa1005372

Moss M, Huang D, Browe R, The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019;380:1997-2008. doi: https://doi.org/10.1056/NEJMoa1901686

Hua, Y, Ou X, Li Q, et al. Neuromuscular blockers in the acute respiratory distress syndrome: A meta-analysis. PlosONE. 2020;15(1):e0227664. doi: https://doi.org/10.1371/journal.pone.0227664

Zheng Z, Jiang L, Zhang S, et al. Neuromuscular blocking agents for acute respiratory distress syndrome: an updated meta-analysis of randomized controlled trials. Respir Res. 2020;21(1):23. doi: https://doi.org/10.1186/s12931-020-1287-4

Torbic H, Krishnan S, Duggal A. Neuromuscular blocking agents for acute respiratory distress syndrome: how did we get conflicting results? Crit Care. 2019;23:305. doi: https://doi.org/10.1186/s13054-019-2586-3

Matthay M, Aldrich J, Gotts J. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet. 2020;8(5):433-4. doi: https://doi.org/10.1016/S2213-2600(20)30127-2

Courcelle R, Gaundry S, Serck N, et al. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: a multicenter observational study. Crit Care. 2020;24:446. doi: https://doi.org/10.1186/s13054-020-03164-2

Nin N, Muriel A, Peñuelas O, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200-8. doi: https://doi.org/10.1007/s00134-016-4611-1. Epub 2017 Jan 20

Morales-Quinteros, Camprubí M, Bringué J, et al. The role of hypercapnia in acute respiratory failure. ICMx 2019;7(Suppl 1):39. doi: https://doi.org/10.1186/s40635-019-0239-0

Crystal GJ. Carbon Dioxide and the Heart: Physiology and Clinical Implications. Anesth Analg. 2015;121(3):610-23. doi: https://doi.org/10.1213/ANE.0000000000000820

Tiruvoipati R, Pilcher D, Buscher H, et al. Effects of hypercapnia and hypercapnic acidosis on hospital mortality inmechanically ventilated patients. Crit Care Med. 2017;45(7):e649-56. doi: https://doi.org/10.1097/ccm.0000000000002332

Wiersinga J, Rhodes A, Cheng A, et al. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782-93. doi: https://doi.org/10.1001/jama.2020.12839

Munshi L, Walkey A, Goligher E, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2019;7(2):163-72. doi: https://doi.org/10.1016/S2213-2600(18)30452-1.

Vincent JL. Annual Uptodate in Intensive Care and Emergency Medicine. Extracorporeal Membrane Oxygenation. Springer. 2020

Peek G, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351-63. doi: https://doi.org/10.1016/S0140-6736(09)61069-2

Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2018;378:1965-75. doi: https://doi.org/10.1056/NEJMoa1800385

Barbaro R, Mad.aren G, Boonstra P, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. 2020;396(10257):1071-8. doi: https://doi.org/10.1016/S0140-6736(20)32008-0

Cho H, Heinsar S, Jeong I, et al. ECMO use in COVID-19: lessons from past respiratory virus outbreaks—a narrative Review. Critical Care. 2020;24:301. doi: https://doi.org/10.1186/s13054-020-02979-3

Romay E, Ferrer R. Extracorporeal CO2 removal: Technical and physiological fundaments and principal indications. Med Intensiva. 2016;40(1):33-8. doi: https://doi.org/10.1016/j.medine.2015.12.002

Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensiv Care Med. 2013;39(5):847-56. doi: https://doi.org/10.1007/s00134-012-2787-6.

Fitzgerald M, Millar J, Blackwood B, et al. Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care. 2014;15;18(3):222. doi: https://doi.org/10.1186/cc13875

Low-flow Extracorporeal Carbon Dioxide Removal in COVID-19-associated Acute Respiratory Distress Syndrome. ClinicalTrials.gov. Identifier: NCT04351906

Boparai S, Steven K, Motayar N. Extra-corporeal carbon dioxide removal in COVID-19 ARDS. Chest. 2020;158(4):A1029. doi: http://dx.doi.org/10.1016/j.chest.2020.08.956

Tully R, Hopley N, Lawrence G. The successful use of extracorporeal carbon dioxide removal as a rescue therapy in a patient with severe COVID-19 pneumonitis. Anaesthesia Reports. 2020;8:113–5. doi: https://doi.org/10.1002/anr3.12072

Accini J, Beltrán N, Nieto V, et al. Documento de consenso. Declaration of consensus in critical medicine for multidisciplinary care of the patient with a suspected or confirmed diagnosis of COVID-19. Acta Colombiana de Cuidado Intensivo. 2020;20(4):287-333. doi: https://doi.org/10.1016/j.acci.2020.04.003

Marini J, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323(22):2329-30. doi: https://doi.org/10.1001/jama.2020.6825

How to Cite
1.
Ávila Reyes D, García P. BD, Salazar Gutierrez G, Gómez González JF, Echeverry Piedrahita DR, Galvis JC, et al. Mechanical ventilation in SARS-CoV-2 patients: state of art. Colomb. J. Anesthesiol. [Internet]. 2022 Apr. 1 [cited 2024 Apr. 26];50(2). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/971

Downloads

Download data is not yet available.
Published
2022-04-01
How to Cite
1.
Ávila Reyes D, García P. BD, Salazar Gutierrez G, Gómez González JF, Echeverry Piedrahita DR, Galvis JC, et al. Mechanical ventilation in SARS-CoV-2 patients: state of art. Colomb. J. Anesthesiol. [Internet]. 2022 Apr. 1 [cited 2024 Apr. 26];50(2). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/971
Section
Narrative review

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code

Some similar items: