Mechanical power measurement during mechanical ventilation of SARS-CoV-2 critically ill patients. A cohort study

  • Alejandro Rivera Palacios Critical Medicine and Intensive Care, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-9285-5329
  • Johana Andrea España Critical Medicine and Intensive Care, Universidad Tecnológica de Pereira. Pereira, Colombia.
  • José Fernando Gómez González a. Critical Medicine and Intensive Care, Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Research Group GIMCCI. Universidad Tecnológica de Pereira, Colombia. Pereira, Colombia. https://orcid.org/0000-0002-2789-314X
  • Guillermo Salazar Gutierrez Critical Medicine and Intensive Care, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-6345-6003
  • Diana Ávila Reyes a. Critical Medicine and Intensive Care, Universidad Tecnológica de Pereira. Pereira, Colombia. b. Critical Medicine and Intensive Care Research Group GIMCCI. Universidad Tecnológica de Pereira, Colombia. Pereira, Colombia. https://orcid.org/0000-0001-7140-5046
  • Paula Moreno Fundación Universitaria Autónoma de las Américas. Pereira, Colombia. https://orcid.org/0000-0003-2602-7626
  • Angie Vanessa Lara Martinez Clínica Los Rosales. Pereira, Colombia.
  • Mateo Aguirre-Flórez School of Health Sciences, Medicine Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0003-0365-562X
  • Adrian Giraldo-Diaconeasa School of Health Sciences, Medicine Program, Universidad Tecnológica de Pereira. Pereira, Colombia. https://orcid.org/0000-0001-7333-8289
Keywords: Artificial respiration, SARS-CoV-2 infection, Coronavirus, Critical care, Anesthesiology, Respiratory distress syndrome

Abstract

Introduction: The ventilator-induced lung injury (VILI) depends on the amount of energy per minute transferred by the ventilator to the lung measured in Joules, which is called mechanical power. Mechanical power is a development variable probably associated with outcomes in ventilated patients.

Objective: To describe the value of mechanical power in patients with SARS-CoV-2 infection and ventilated for other causes and its relationship between days of mechanical ventilation, length of stay in the intensive care unit (ICU), and mortality.

Methods: A multicenter, analytical, observational cohort study was conducted in patients with SARS-CoV-2 infection who required invasive mechanical ventilation and patients ventilated for other causes for more than 24 hours.

Results: The cohort included 91 patients on mechanical ventilation in three tertiary care centers in the city of Pereira, Colombia. The average value of the mechanical power found was 22.7 ± 1 Joules/min. In the subgroup of patients with SARS-CoV-2 infection, the value of mechanical power was higher 26.8 ± 9 than in the subgroup of patients without a diagnosis of SARS-CoV-2 infection 18.2 ± 1 (p <0.001).

Conclusion: Mechanical power is an important variable to consider during the monitoring of mechanical ventilation. This study found an average value of mechanical power of 22.7 ± 1 Joules/min, being higher in patients with SARS-CoV-2 infection related to longer days of mechanical ventilation and a longer stay in the ICU.

References

Chiappero GR, & Villarejo, F. Ventilación mecánica: libro del Comité de Neumonología Crítica de la SATI2010. ISBN 9500609010

Vasques F, Duscio E, Cipulli F, et al. Determinants and Prevention of Ventilator-Induced Lung Injury. Crit Care Clin. 2018;34(3):343-56. doi: https://doi.org/10.1016/j.ccc.2018.03.004.

Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42(10):1597-600. doi: https://doi.org/10.1007/s00134-016-4534-x.

Gattinoni L, Marini JJ, Collino F, et al. The future of mechanical ventilation: lessons from the present and the past. Crit Care. 2017;21(1):183. https://doi.org/10.1186/s13054-017-1750-x

Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-75. doi: https://doi.org/10.1007/s00134-016-4505-2.

Katira BH. Ventilator-Induced Lung Injury: Classic and Novel Concepts. Respir Care. 2019;64(6):629-37. doi: https://doi.org/10.4187/respcare.07055.

Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical Power and Development of Ventilator-induced Lung Injury. Anesthesiology. 2016;124(5):1100-8. doi: https://doi.org/10.1097/ALN.0000000000001056.

Serpa Neto A DR, Johnson AE, Bos LD. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-22. doi: https://doi.org/10.1007/s00134-018-5375-6.

Rosas Sánchez K, Gutiérrez Zárate, D, Cerón Díaz UW. Asociación y valor predictivo del poder mecánico con los días libres de ventilación mecánica. Medicina Crítica. 2017;31(6):320-5.

Parrillo JE. General Principles of Mechanical Ventilation. 2019. In: Critical Care Medicine: Principles of Diagnosis and Management in the Adult [Internet]. [129-43.]. ISBN: 9780323611602

Aoyama H, Yamada Y, Fan E. The future of driving pressure: a primary goal for mechanical ventilation? J Intensive Care. 2018;6:64. doi: https://doi.org/10.1186/s40560-018-0334-4

Beitler JR, Malhotra A, Thompson BT. Ventilator-induced Lung Injury. Clin Chest Med. 2016;37(4):633-46. doi: https://doi.org/10.1016/j.ccm.2016.07.004.

Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. Ann Transl Med. 2018;6(19):376. doi: https://doi.org/10.21037/atm.2018.06.06.

Garcia-Prieto E, Amado-Rodriguez L, Albaiceta GM, et al. Monitorization of respiratory mechanics in the ventilated patient. Med Intensiva. 2014;38(1):49-55. doi: https://doi.org/10.1016/j.medin.2013.09.003.

Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327-36. doi: https://doi.org/10.1056/NEJMoa032193.

Ferrer L. Ortiz G, Celis E. Tratado de ventilación mecánica. Un enfoque interdisciplinario. . In: Distribuna, editor. Distribuna. ed. 2017. ISBN 9789588813585

Brower RG MM, Morris A, Schoenfeld D, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8. doi: https://doi.org/10.1056/NEJM200005043421801.

Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-55. doi: https://doi.org/10.1056/NEJMsa1410639.

Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:276. doi: https://doi.org/10.1186/s13054-016-1446-7.

Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865-76. doi: https://doi.org/10.1007/s00134-016-4571-5.

Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126-36. doi: https://doi.org/10.1056/NEJMra1208707

Yoshida T UA, Matsuura N, Mashimo T, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578-85. doi: https://doi.org/10.1097/CCM.0b013e3182451c40.

Gattinoni LA, Carlesso E, Caironi P. Stress and strain within the lung. Current Opinion in Critical Care 2012;18(1):42-7. doi: https://doi.org/10.1097/MCC.0b013e32834f17d9.

Rahaman U. Mathematics of Ventilator-induced Lung Injury. Indian J Crit Care Med. 2017;21(8):521-4. doi: https://doi.org/10.4103/ijccm.IJCCM_411_16.

Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178(4):346-55. doi: https://doi.org/10.1164/rccm.200710-1589OC.

Avila D, García B, Salazar G, et al. Mechanical ventilation in SARS-CoV-2 patients: state of art. narrative review. Colombian Journal of Anesthesiology. 2021. doi: https://doi.org/10.5554/22562087.e971

How to Cite
1.
Rivera Palacios A, España JA, Gómez González JF, Salazar Gutierrez G, Ávila Reyes D, Moreno P, Lara Martinez AV, Aguirre-Flórez M, Giraldo-Diaconeasa A. Mechanical power measurement during mechanical ventilation of SARS-CoV-2 critically ill patients. A cohort study. Colomb. J. Anesthesiol. [Internet]. 2022 May 6 [cited 2022 Oct. 3];50(4). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/1037

Downloads

Download data is not yet available.
Published
2022-05-06
How to Cite
1.
Rivera Palacios A, España JA, Gómez González JF, Salazar Gutierrez G, Ávila Reyes D, Moreno P, Lara Martinez AV, Aguirre-Flórez M, Giraldo-Diaconeasa A. Mechanical power measurement during mechanical ventilation of SARS-CoV-2 critically ill patients. A cohort study. Colomb. J. Anesthesiol. [Internet]. 2022 May 6 [cited 2022 Oct. 3];50(4). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/1037
Section
Original