Comparison of the pharmacokinetic profiles of three molecules of remifentanil in terms of hemodynamic response in laryngoscopy and tracheal intubation maneuvers

  • Luis A. Muñoz Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Luis E. Reyes Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Carlos G. Niño Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Walter G. Gómez Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • William R. Díaz Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Juan C. Romero Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Gustavo Mendoza Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
  • Jimmy J. Arevalo Anesthesiology and Resuscitation, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá, Colombia
Keywords: Pharmacology, Laryngoscopy, Intubation, Anesthesia, Hemodynamics

Abstract

Introduction: Several remifentanil products are commercialized in Colombia while these have never been compared in a clinical setting.

Objective: The aim of this study was to investigate the pharmacodynamic profile of the branded molecule of remifentanil (group O: Glaxo SmithKline Manufacturing S.P.A.) and two unbranded molecules (group A: Laboratorios Chalver de Colombia S.A. and group B: Instituto Biológico Contemporaneo, Argentina) registered in Colombia.

Methods: We carried out a double-blind, randomized, controlled trial. The branded molecule of remifentanil (group O, n = 29) was compared with the two unbranded molecules (group A, n = 29; group B, n = 32) during anesthetic induction and tracheal intubation in adult patients ASA I without predictors for difficult airway. The target controlled infusion (TCI) doses evaluated were 6, 8 and 10 ng/ml with the Minto model. Induction was complemented with propofol 5 mcg/ml (TCI) with the Schneider model and rocuronium 0.6 mg/kg. The primary outcome was defined as the difference in mean arterial pressure and heart rate pre-intubation (TCI equilibrium) and post-intubation (maximum measurement within 5 minutes).

Results: A similar pharmacodinamic profile was observed between the studied remifentanil molecules. The differences in the change in heart rate were 1.27 (95% CI: -3.11;5.67) with molecule A and 1.40 (95% CI: -2.65;5.46) with molecule B against molecule O (beats/minute). The differences in the change in mean arterial pressure were 1 (95% CI: -4.81;6.81) for molecule A and 1.82 (95% CI: -4.08;7.74) for molecule B against molecule O (mmHg). There was a case of arterial hypotension in each group.

Conclusion: The results suggest that from a pharmacodynamic point of view branded and unbranded remifentanil molecules are similar for laryngoscopy/intubation with TCI doses 6, 8 and 10 ng/ml.

References

1. Rose DK, Cohen MM. The airway: problems and predictions in 18,500 patients. Can J Anaesth. 1994;41:372-83.
2. Miller DR, Martineau RJ, O'Brien H, Hull KA, Oliveras L, Hindmarsh T, et al. Effects of alfentanil on the hemodynamic and catecholamine response to tracheal intubation. Anesth Analg. 1993;76:1040-6.
3. Thompson JP, Hall AP, Russell J, Cagney B, Rowbotham DJ. Effect of remifentanil on the haemodynamic response to orotracheal intubation. Br J Anaesth. 1998;80:467-9.
4. Ko SH, Kim DC, Han YJ, Song HS. Small-dose fentanyl: optimal time of injection for blunting the circulatory responses to tracheal intubation. Anesth Analg. 1998;86:658-61.
5. Kazama T, Ikeda K, Morita K. Reduction by fentanyl of the Cp50 values of propofol and hemodynamic responses to various noxious stimuli. Anesthesiology. 1997;87:213-27.
6. Casati A, Fanelli G, Albertin A, Deni F, Danelli G, Grifoni F, et al. Small doses of remifentanil or sufentanil for blunting cardiovascular changes induced by tracheal intubation: a double-blind comparison. Eur J Anaesthesiol. 2001;18:108-12.
7. Albertin A, Casati A, Federica L, Roberto V, Travaglini V, Bergonzi P, et al. The effect-site concentration of remifentanil blunting cardiovascular responses to tracheal intubation and skin incision during bispectral index-guided propofol anesthesia. Anesth Analg. 2005;101:125-30 [table of contents .
8. Glass PS, Hardman D, Kamiyama Y, Quill TJ, Marton G, Donn KH, et al. Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: remifentanil (GI87084B). Anesth Analg. 1993;77:1031-40.
9. Servin FS, Billard V. Remifentanil and other opioids. Handb Exp Pharmacol. 2008:283-311.
10. Moerman AT, Herregods LL, De Vos MM, Mortier EP, Struys MM. Manual versus target-controlled infusion remifentanil administration in spontaneously breathing patients. Anesth Analg. 2009;108:828-34.
11. Egan TD. Target-controlled drug delivery: progress toward an intravenous "vaporizer" and automated anesthetic administration. Anesthesiology. 2003;99:1214-9.
12. Gauzit R, Lakdhari M. Generic antibiotic drugs: is effectiveness guaranteed? Med Mal Infect. 2012.
13. Garcia MM, Angelini MC, Thomas T, Lenz K, Jeffrey P. Implementation of an opioid management initiative by a state Medicaid program. J Manag Care Pharm. 2014;20:447-54.
14. Estévez C, Francisco E. Estudio de bioequivalencia: enfoque metodológico y aplicaciones prácticas en la evaluación de medicamentos genéricos. Rev Méd Urug. 2000;16:133-43.
15. Estévez F, Parrillo S, Cedrés M. Estudios de bioequivalencia in vivo para demostrar la intercambiabilidad de medicamentos. Rev Méd Urug. 2012;28:165-73.
16. Tafur BLA, Flórez EL. Aplicación práctica de los nomogramas de remifentanil y propofol. Rev Colomb Anestesiol. 2009;37:311-9.
17. Yeganeh N, Roshani B, Latifi H, Almasi A. Comparison of target-controlled infusion of sufentanil and remifentanil in blunting hemodynamic response to tracheal intubation. J Inj Violence Res. 2013;5:101-7.
18. Rao MH, Venkatraman A, Mallleswari R. Comparison of intubating conditions between rocuronium with priming and without priming: randomized and double-blind study. Indian J Anaesth. 2011;55:494-8.
19. Guignard B, Menigaux C, Dupont X, Fletcher D, Chauvin M. The effect of remifentanil on the bispectral index change and hemodynamic responses after orotracheal intubation. Anesth Analg. 2000;90:161-7.
20. Helfman SM, Gold MI, DeLisser EA, Herrington CA. Which drug prevents tachycardia and hypertension associated with tracheal intubation: lidocaine, fentanyl, or esmolol? Anesth Analg. 1991;72:4S2-6.
How to Cite
1.
Muñoz LA, Reyes LE, Niño CG, Gómez WG, Díaz WR, Romero JC, Mendoza G, Arevalo JJ. Comparison of the pharmacokinetic profiles of three molecules of remifentanil in terms of hemodynamic response in laryngoscopy and tracheal intubation maneuvers. Colomb. J. Anesthesiol. [Internet]. 2015Jul.1 [cited 2022Jan.20];43(3):186-93. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/155

Downloads

Download data is not yet available.
Published
2015-07-01
How to Cite
1.
Muñoz LA, Reyes LE, Niño CG, Gómez WG, Díaz WR, Romero JC, Mendoza G, Arevalo JJ. Comparison of the pharmacokinetic profiles of three molecules of remifentanil in terms of hemodynamic response in laryngoscopy and tracheal intubation maneuvers. Colomb. J. Anesthesiol. [Internet]. 2015Jul.1 [cited 2022Jan.20];43(3):186-93. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/155
Section
Original

More on this topic