Predictive and clinical performance of a TCI device for sevoflurane at a conventional workstation: Pharmacokinetic correlation of the model used

  • César Augusto Candia Arana Service of Anesthesia and Reanimation, Cartagena University Hospital Campus, Cartagena, Murcia, Spain
  • Caridad Greta Castillo Monzón Service of Anesthesia and Resuscitation, Complejo Hospitalario Universitario de Cartagena, Murcia, Spain
  • José Antonio Álvarez Gómez Service of Anesthesia and Resuscitation, Complejo Hospitalario Universitario de Cartagena, Murcia, Spain
  • Joaquín Roca González Industrial and Medical Electronics Research Group, Universidad Politécnica de Cartagena, Cartagena, Spain
  • Javier Hernando Eslava Schmalbach Health Equity Team, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
Keywords: Anesthetics, Inhalation, Global warming, Pharmacokinetics, Economics, Pharmaceutical, Anesthesia

Abstract

Introduction: Good governance of resources and global warming has attracted interest on minimal flow (0.30.5 l/min) inhalation anesthesia.

Objectives: To evaluate the predictive and clinical performance of a TCI (Target-controlled infusion) device, and its pharmacokinetic correlation for sevoflurane.

Methods: Prospective, longitudinal, and analytical study on 25 adult patients. Fresh gas flow used 0.5 l/min. Target concentration of 1.2% (v/v). Continuous and variable infusion into the circuit of the anesthesia workstation. Controller developed with LABVIEW 6.1. Hemodynamic, respiratory and anesthetic depth data collected every 5 s using the anesthesia workstation software. Bias (MDPE%), inaccuracy (MDAPE%), wobble, and divergence of the TCI device were determined in the first hour. STATA-12 pk collapse was used to analyze the area under the curve of the target and expired concentrations. The results are expressed as Mean (CI 95%) and Median [IQR]*.

Results: Target concentration used 1.22 [1.141.37] %*, reached in 04:07 [03:1506:15]* min:s (expiratory branch). Anesthetic duration 1:10:50 (00:56:571:24: 43) h:min:s. Sevoflurane consumption 6.9 (5.78.0) ml. MDPE% -12.8 (-17.6 to -8.1) %;MDAPE% 15.9 (11.919.8) %;wobble 6.9 (5.08.7)% and divergence 0.89% (-5.96 to 7.7)%h-1. Interactions per hour on the TCI of 3 (24). Correlation of the area under the curve, Spearman's rho = 0.8577, p < 0.00001. =15% inaccuracy was associated with age >65 years and obesity.

Conclusions: The TCI sevoflurane© showed good performance, and the target concentration was rapidly reached and remained stable, with few interactions with the device needed during the first hour. There were neither overdosing nor clinically significant alterations.

References

1. Weinberg L, Story D, Nam J, McNicol L. Pharmacoeconomics of volatile inhalational anaesthetic agents: an 11-year retrospective analysis. Anaesth Intensive Care. 2010;38:849-54.
2. Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg. 2012;114:1086-90.
3. de Castro Jr J, Bolfi F, de Carvalho LR, Braz JR. The temperature and humidity in a low-flow anesthesia workstation with and without a heat and moisture exchanger. Anesth Analg. 2011;113:534-8.
4. Candia CA. Anestesia Cuantitativa Estado Actual. REVISIÓN. Rev Colomb Anestesiol. 2001;29:33-41.
5. Fukuda H, Kawamoto M, Yuge O, Fujii K. A comparison of the effects of prolonged (>10 hour) low-flow sevoflurane, high-flow sevoflurane, and low-flow isoflurane anaesthesia on hepatorenal function in orthopaedic patients. Anaesth Intensive Care. 2004;32:210-8.
6. Marini F, Bellugi I, Gambi D, Pacenti M, Dugheri S, Focardi L, et al. Compound A, formaldehyde and methanol concentrations during low-flow sevoflurane anaesthesia: comparison of three carbon dioxide absorbers. Acta Anaesthesiol Scand. 2007;51:625-32.
7. Brattwall M, Warrén-Stomberg M, Hesselvik F, Jakobsson J. Brief review: theory and practice of minimal fresh gas flow anesthesia. Can J Anaesth. 2012;59:785-97.
8. Ryan SM, Nielsen CJ. Global warming potential of inhaled anesthetics: application to clinical use. Anesth Analg. 2010;111:92-8.
9. Feldman JM. Managing fresh gas flow to reduce environmental contamination. Anesth Analg. 2012;114:1093-110.
10. Kennedy RR, French RA. The development of a system to guide volatile anaesthetic administration. Anaesth Intensive Care. 2011;39:182-90.
11. Nair BG, Peterson GN, Neradilek MB, Newman SF, Huang EY, Schwid HA. Reducing wastage of inhalation anesthetics using real-time decision support to notify of excessive fresh gas flow. Anesthesiology. 2013;118:874-84.
12. Kennedy RR, French RA. Changing patterns in anesthetic fresh gas flow rates over 5 years in a teaching hospital. Anesth Analg. 2008;106:1487-90.
13. Hemmerling TM. Automated anesthesia. Curr Opin Anaesthesiol. 2009;22:757-63.
14. Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64:1229-35.
15. Tay S, Weinberg L, Peyton P, Story D, Briedis J. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations. Anaesth Intensive Care. 2013;41:95-101.
16. Vagts DA, Lockwood GC. The uptake of sevoflurane during anaesthesia. Anaesthesia. 1998;53:862-6.
17. Hendrickx JFA, Van Zundert AAJ, De Wolf AM. Sevoflurane pharmacokinetics: effect of cardiac output. Br J Anaesth. 1998;81:495-501.
18. Enlund M, Lambert H, Wiklund L. The sevoflurane saving capacity of a new anaesthetic agent conserving device compared with a low flow circle sytem. Acta Anaesthesiol Scand. 2002;46:506-11.
19. Candia CA, Acosta EAR. Anestesia Cuantitativa Continua Asistida por Computador Evaluación de un Controlador de Asa Abierta. Rev Colomb Anestesiol. 2001;29:43-9.
20. Lowe HJ, Ernst EA. The quantitative practice of anesthesia - use of closed circuit. Baltimore: Williams and Wilkins; 1981.
21. Candia CA, Alvarez JA, Roca J. Predictive performance of an open-loop controller for sevoflurane with minimal fresh gas flow. Eur J Anest. 2008;25 Suppl. 44:32 [3AP3-4.
22. Matsuura T, Oda Y, Tanaka K, Mori T, Nishikawa K, Asada A. Advance of age decreases the minimum alveolar concentrations of isoflurane and sevoflurane for maintaining bispectral index below 50. Br J Anaesth. 2009;102:331-5.
23. Kennedy RR, Minto C, Seethepalli A. Effect-site half-time for burst suppression is longer than for hypnosis during anaesthesia with sevoflurane. Br J Anaesth. 2008;100:72-7.
24. Soehle M, Ellerkmann RK, Grube M, Kuech M, Wirz S, Hoeft A, et al. Comparison between bispectral index and patient state index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology. 2008;109:799-805.
25. Manyam SC, Gupta DK, Johnson KB, White JL, Pace NL, Westenskow DR, et al. Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006;105:267-78.
26. Mapleson WW. Effect of age on Mac in humans a meta-analysis. Br J Anaesth. 1996;76:179-85.
27. Lerou JG, Booij LH. Model-based administration of inhalation anaesthesia 1. Developing a system model. Br J Anaesth. 2001;86:12-28.
28. Kennedy RR, French RA, Spencer C. Predictive accuracy of a model of volatile anesthetic uptake. Anesth Analg. 2002;95:1616-21.
29. Liu J, Laster MJ, Eger II EI, Taheri S. Absorption and degradation of sevoflurane and isoflurane in a conventional anesthetic circuit. Anesth Analg. 1991;72:785-9.
30. Parra CJ. Esquema práctico para la anestesia cuantitativa. Rev Colomb Anestesiol. 1982;10:7.
31. Renfrew CW, Murray JM, Fee JP. A qualitative investigation into the physical stability of polypropylene and polyethylene in liquid isoflurane and sevoflurane. Anaesthesia. 2000;55: 793-7.
32. Varvel J, Donoho D, Shafer S. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63-94.
33. Mapleson WW. The theoretical ideal fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia. 1998;53:264-72.
34. Ip-Yam PC, Goh MH, Chan YH, Kong CF. Clinical evaluation of the Mapleson theoretical ideal fresh gas flow sequence at the start of low-flow anaesthesia with isoflurane, sevoflurane and desflurane. Anaesthesia. 2001;56:160-4.
35. Sobreira DP, Jreige MM, Saraiva R. The fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia. 2001;56:379-80.
36. Nishiyama T, Kohno Y, Ozaki M, Koishi K. Usefulness of an anesthetic conserving device (AnaConDaTM) in sevoflurane anesthesia. Minerva Anestesiol. 2012;78:310-4.
37. Candia CA. Controlador de asa abierta para sevofluorano con flujos mínimos guiado por entropía. Rev Mex Anest. 2009;32 Suppl. 1:S177-81.
38. Sturesson LW, Malmkvist G, Bodelsson M, Niklason L, Jonson B. Carbon dioxide rebreathing with the anaesthetic conserving device. AnaConDa®. Br J Anaesth. 2012;109:279-83.
39. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a ‘Diprifusor’ TCI system. Anaesthesia. 1998;53:61-7.
40. Glen JB, Servin F. Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth. 2009;102:626-32.
41. Albertin A, Poli D, La Colla L, Gonfalini M, Turi S, Pasculli N, et al. Predictive performance of ‘Servin’s formula’ during BIS-guided propofol-remifentanil target-controlled infusion in morbidly obese patients. Br J Anaesth. 2007;98:66-75.
42. Li YH, Xu JH, Yang JJ, Tian J, Xu JG. Predictive performance of ‘Diprifusor’ TCI system in patients during upper abdominal surgery under propofol/fentanyl anesthesia. J Zhejiang Univ Sci B. 2005;6:43-8.
43. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90:132-41.
44. Enlund M, Kietzmann D, Bouillon T, Züchner K, Meineke I. Population pharmacokinetics of sevoflurane in conjunction with the AnaConDa: toward target-controlled infusion of volatiles into the breathing system. Acta Anaesthesiol Scand. 2008;52:553-60.
45. Belda JF, Soro M, Badenes R, Meiser A, García ML, Aguilar G, et al. The predictive performance of a pharmacokinetic model for manually adjusted infusion of liquid sevoflurane for use with the Anesthetic-Conserving Device (AnaConDa): a clinical study. Anesth Analg. 2008;106:1207-14.
46. Soro M, Badenes R, Garcia-Perez ML, Gallego-Ligorit L, Martí FJ, Aguilar G, et al. The Accuracy of the Anesthetic Conserving Device (Anaconda©) as an Alternative to the Classical Vaporizer in Anesthesia. Anesth Analg. 2010;111:1176-9.
47. Singaravelu S, Barclay P. Automated control of end-tidal inhalation anaesthetic concentration using the GE Aisys CarestationTM. Br J Anaesth. 2013;110:561-6.
48. Ryu HG, Lee JH, Lee KK, Gil NS, Kim CS, Sim SE, Lee SC, Min SW. The effect of low fresh gas flow rate on sevoflurane consumption. Korean J Anesthesiol. 2011;60:75-7.
49. Hendrickx JF, De Wolf A. Special aspects of pharmacokinetics of inhalation anesthesia. Handb Exp Pharmacol. 2008:159-86.
50. Locher S, Stadler KS, Boehlen T, Bouillon T, Leibundgut D, Schumacher, et al. A new closed-loop control system for isoflurane using bispectral index outperforms manual control. Anesthesiology. 2004;101:591-602.
51. Gómez Oquendo FJ, Casas Arroyabe FD, Fernández JM, Guarín Grisales A. Anestesia total intravenosa en un sistema de lazo cerrado: reporte del primer caso en Colombia. Rev Colomb Anestesiol. 2013;41:306-10.
1. Weinberg L, Story D, Nam J, McNicol L. Pharmacoeconomics of volatile inhalational anaesthetic agents: An 11-year retrospective analysis. Anaesth Intensive Care. 2010;38:849-54.
2. Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg. 2012;114:1086-90.
3. De Castro Jr J, Bolfi F, de Carvalho LR, Braz JR. The temperature and humidity in a low-flow anesthesia workstation with and without a heat and moisture exchanger. Anesth Analg. 2011;113:534-8.
4. Candia CA. Anestesia cuantitativa. Estado actual. Rev Colomb Anestesiol. 2001;29:33-41.
5. Fukuda H, Kawamoto M, Yuge O, Fujii K. A comparison of the effects of prolonged (>10 hour) low-flow sevoflurane, high-flow sevoflurane, and low-flow isoflurane anaesthesia on hepatorenal function in orthopaedic patients. Anaesth Intensive Care. 2004;32:210-80.
6. Marini F, Bellugi I, Gambi D, Pacenti M, Dugheri S, Focardi L, et al. Compound A, formaldehyde and methanol concentrations during low-flow sevoflurane anaesthesia: Comparison of three carbon dioxide absorbers. Acta Anaesthesiol Scand. 2007;51:625-32.
7. Brattwall M, Warren-Stomberg M, Hesselvik F, Jakobsson J. Brief review: Theory and practice of minimal fresh gas flow anesthesia. Can J Anaesth. 2012;59:785-97.
8. Ryan SM, Nielsen CJ. Global warming potential of inhaled anesthetics: Application to clinical use. Anesth Analg. 2010;111:92-8.
9. Feldman JM. Managing fresh gas flow to reduce environmental contamination. Anesth Analg. 2012;114:1093-110.
10. Kennedy RR, French RA. The development of a system to guide volatile anaesthetic administration. Anaesth Intensive Care. 2011;39:182-90.
11. Nair BG, Peterson GN, Neradilek MB, Newman SF, Huang EY, Schwid HA. Reducing wastage of inhalation anesthetics using real-time decision support to notify of excessive fresh gas flow. Anesthesiology. 2013;118:874-84.
12. Kennedy RR, French RA. Changing patterns in anesthetic fresh gas flow rates over 5 years in a teaching hospital. Anesth Analg. 2008;106:1487-90.
13. Hemmerling TM. Automated anesthesia. Curr Opin Anaesthesiol. 2009;22:757-63.
14. Lortat-Jacob B, Billard V, Buschke W, Servin F. Assessing the clinical or pharmaco-economical benefit of target controlled desflurane delivery in surgical patients using the Zeus anaesthesia machine. Anaesthesia. 2009;64: 1229-35.
15. Tay S, Weinberg L, Peyton P, Story D, Briedis J. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations. Anaesth Intensive Care. 2013;41:95-101.
16. Vagts DA, Lockwood GC. The uptake of sevofluorane during anaesthesia. Anaesthesia. 1998;53:862-6.
17. Hendrickx JFA, van Zundert AAJ, de Wolf AM. Sevoflurane pharmacokinetics: Effect of cardiac output. Br J Anaesth. 1998;81:495-501.
18. Enlund M, Lambert H, Wiklund L. The sevoflurane saving capacity of a new anaesthetic agent conserving device compared with a low flow circle sytem. Acta Anaesthesiol Scand. 2002;46:506-11.
19. Candia CA, Acosta EAR. Anestesia cuantitativa continua asistida por computador evaluación de un controlador de asa abierta. Rev Colomb Anestesiol. 2001;29:43-9.
20. Lowe HJ, Ernst EA. The quantitative practice of anesthesiause of closed circuit. Baltimore: Williams and Wilkins; 1981.
21. Candia CA, Alvarez JA, Roca J. Predictive performance of an open-loop controller for sevoflurane with minimal fresh gas flow. Eur J Anest. 2008;25 Suplement 44:32 (3AP3-4).
22. Matsuura T, Oda Y, Tanaka K, Mori T, Nishikawa K, Asada A. Advance of age decreases the maintaining bispectral index below 50. BrJ Anaesth. 2009;102:331-5.
23. Kennedy RR, Minto C, Seethepalli A. Effect-site half-time for burst suppression is longer than for hypnosis during anaesthesia with sevoflurane. Br J Anaesth. 2008;100:72-7.
24. Soehle M, Ellerkmann RK, Grube M, Kuech M, Wirz S, Hoeft A, et al. Comparison between bispectral index and patient state index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology. 2008;109:799-805.
25. Manyam SC, Gupta DK, Johnson KB, White JL, Pace NL, Westenskow DR, et al. Opioid-volatile anesthetic synergy: A response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006;105:267-78.
26. Mapleson WW. Effect of age on mac in humans. A meta-analysis. Br J Anaesth. 1996;76:179-85.
27. Lerou JG, Booij LH. Model-based administration of inhalation anaesthesia. Br J Anaesth. 2001;86:12-28.
28. Kennedy RR, French RA, Spencer C. Predictive accuracy of a model of volatile anesthetic uptake. Anesth Analg. 2002;95:1616-2210.
29. Liu J, Laster MJ, Eger EI, Taheri S. Absorption and degradation of sevoflurane and isoflurane in a conventional anesthetic circuit. Anesth Analg. 1991;72:785-9.
30. Parra CJ. Esquema práctico para la anestesia cuantitativa. Rev Colomb Anestesiol. 1982;10:7.
31. Renfrew CW, Murray JM, Fee JP. A qualitative investigation into the physical stability of polypropylene and polyethylene in liquid isoflurane and sevoflurane. Anaesthesia. 2000;55: 793-7.
32. Varvel J, Donoho D, Shafer S. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63-94.
33. Mapleson WW. The theoretical ideal fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia. 1998;53:264-72.
34. Ip-Yam PC, Goh MH, Chan YH, Kong CF. Clinical evaluation of the Mapleson theoretical ideal fresh gas flow sequence at the start of low-flow anaesthesia with isoflurane, sevoflurane and desflurane. Anaesthesia. 2001;56:160-4.
35. Sobreira DP, Jreige MM, Saraiva R. The fresh-gas flow sequence at the start of low-flow anaesthesia. Anaesthesia. 2001;56:379-80.
36. Nishiyama T, Kohno Y, Ozaki M, Koishi K. Usefulness of an anesthetic conserving device (AnaConDaTM) in sevoflurane anesthesia. Minerva Anestesiol. 2012;78:310-4.
37. Candia CA. Controlador de asa abierta para sevofluorano con flujos mínimos guiado por entropía. Rev Mex Anest. 2009;32 Supl. 1:S177-81.
38. Sturesson LW, Malmkvist G, Bodelsson M, Niklason L, Jonson B. Carbon dioxide rebreathing with the anaesthetic conserving device AnaConDa®. Br J Anaesth. 2012;109:279-83.
39. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a 'Diprifusor' TCI system. Anaesthesia. 1998;53:61-7.
40. Glen JB, Servin F. Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth. 2009;102:626-32.
41. Albertin A, Poli D, la Colla L, Gonfalini M, Turi S, Pasculli N, et al. Predictive performance of 'Servin's formula' during BIS-guided propofol-remifentanil target-controlled infusion in morbidly obese patients. Br J Anaesth. 2007;98:66-75.
42. Li YH, Xu JH, Yang JJ, Tian J, Xu JG. Predictive performance of 'Diprifusor' TCI system in patients during upper abdominal surgery under propofol/fentanyl anesthesia. J Zhejiang Univ Sci B. 2005;6:43-8.
43. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90:132-41.
44. Enlund M, Kietzmann D, Bouillon T, Züchner K, Meineke I. Population pharmacokinetics of sevoflurane in conjunction with the AnaConDa: Toward target-controlled infusion of volatiles into the breathing system. Acta Anaesthesiol Scand. 2008;52:553-60.
45. Belda JF, Soro M, Badenes R, Meiser A, García ML, Aguilar G, et al. The predictive performance of a pharmacokinetic model for manually adjusted infusion of liquid sevofluorane for use with the Anesthetic-Conserving Device (AnaConDa): A clinical study. Anesth Analg. 2008;106:1207-14.
46. Soro M, Badenes R, Garcia-Perez ML, Gallego-Ligorit L, Martí FJ, Aguilar G, et al. The accuracy of the anesthetic conserving device (Anaconda©) as an alternative to the classical vaporizer in anesthesia. Anesth Analg. 2010;111: 1176-9.
47. Singaravelu S, Barclay P. Automated control of end-tidal inhalation anaesthetic concentration using the GE Aisys CarestationTM. Br J Anaesth. 2013;110:561-6.
48. Ryu HG, Lee JH, Lee KK, Gil NS, Kim CS, Sim SE, et al. The effect of low fresh gas flow rate on sevoflurane consumption. Korean J Anesthesiol. 2011;60:75-7.
49. Hendrickx JF, de Wolf A. Special aspects of pharmacokinetics of inhalation anesthesia. Handb Exp Pharmacol. 2008: 159-86.
50. Locher S1, Stadler KS, Boehlen T, Bouillon T, Leibundgut D, Schumacher, et al. A new closed-loop control system for isoflurane using bispectral index outperforms manual control. Anesthesiology. 2004;101:591-602.
51. Gómez Oquendo FJ, Casas Arroyabe FD, Fernández JM, Guarín Grisales GA. Anestesia total intravenosa en un sistema de lazo cerrado: reporte del primer caso en Colombia. Rev Colomb Anestesiol. 2013;41:306-10.
How to Cite
1.
Candia Arana CA, Castillo Monzón CG, Álvarez Gómez JA, Roca González J, Eslava Schmalbach JH. Predictive and clinical performance of a TCI device for sevoflurane at a conventional workstation: Pharmacokinetic correlation of the model used. Colomb. J. Anesthesiol. [Internet]. 2014Oct.1 [cited 2021May10];42(4):255-64. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/236

Downloads

Download data is not yet available.
Published
2014-10-01
How to Cite
1.
Candia Arana CA, Castillo Monzón CG, Álvarez Gómez JA, Roca González J, Eslava Schmalbach JH. Predictive and clinical performance of a TCI device for sevoflurane at a conventional workstation: Pharmacokinetic correlation of the model used. Colomb. J. Anesthesiol. [Internet]. 2014Oct.1 [cited 2021May10];42(4):255-64. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/236
Section
Original

More on this topic