Randomized cross-over clinical trial comparing two pharmacokinetic models of propofol using entropy indices

  • Oscar Leonardo Mosquera-Dussán Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
  • Andrés Cárdenas Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
  • Daniel Alfonso Botero-Rosas Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
  • Andrés Yepes Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
  • Henry Oliveros Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
  • Rubén Hena Grupo Calidad, Seguridad, y Educación en Salud, Sociedad Colombiana de Anestesiología y Reanimación (S.C.A.R.E.), Bogotá D.C., Colombia
  • Fernando Ríos Grupo PROSE1M, Facultad de Medicina, Doctorado en Biociencias, Universidad de La Sabana, Chía, Colombia
Keywords: Pharmacokinetics, Entropy, Deep sedation, Anesthesia, Propofol

Abstract

Introduction: There are two different pharmacokinetic models (Marsh and Schnider) for the administration of total intravenous anesthesia with propofol, the parameter differences could have some impact over the depth of anesthesia.

Objective: To determine if there is a significant difference in the variability of depth of anesthesia suggesting that one model is superior in achieving a more stable and predictable depth of anesthesia during surgery.

Methods: A cross-over clinical trial was conducted on 16 healthy patients programmed for upper or lower limb ambulatory orthopedic surgery. Patients were randomly assigned to (i) effect site target controlled infusion of propofol with Marsh model at a target concentration of 2.5 μg/ml for 20 min, a 20 min washout, then propofol was administered with Schnider model at the same effect site target for the reminder of the surgery, or (ii) the reverse sequence. Differences in variability of depth of anesthesia, were assessed by comparing records of spectral entropy indices during surgery through an unpaired t-test.

Results: There was no evidence of significant difference in the mean variances of either spectral entropy indices between the two models (p-value: 0.57 for State Entropy, p-value: 0.51 for Response Entropy).

Conclusion: The study suggests that both pharmacokinetic models are equivalent in terms of stability of depth of anesthesia. It is important to keep testing determinants of the efficacy of the models in different types of population because their behavior according to individual characteristics of patients or variables such as cost-effectiveness could end up tilting the scale.

References

1. Cole CD, Gottfried ON, Gupta DK. Total intravenous anesthesia: advantages for intracraneal surgery. Neurosurgery. 2007;61:369-78.

2. Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol. 2006;19:498-503.

3. Yasny JS, White J. Environmental implications of anesthetic gases. Anesth Prog. 2012;59:154-8.

4. Lauder GR. Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice. Pediatr Anesth. 2015;25:52-64.

5. Tafur LA, Lema E. Anestesia total intravenosa. Rev Colomb Anestesiol. 2010;38:215-31.

6. Absalom AR, Man V, De Smet T, Struys MMRF. Pharmacokinetic models for propofol - defining and illuminating the devil in the detail. Br J Anaesth. 2009;103:26-37.

7. B.Braun. B.Braun Space Infusion Pumps [Internet]. Space System - Technical Data [cited 2015 Oct 1] . p. 7. Available from: http://www.space.bbraun.com/documents/Space_System_TechnicaLData_l.pdf.

8. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41-8.

9. Schnider T, Minto C, Pedro L, Dds DB, Steven L, Elizabeth J. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers methods study design. Anesthesiology. 1998;88:1170-82.

10. Landers R, Wen P, Pather S. Depth of anaesthesia: measuring or guessing? IEEE International Conference on Nano/Molecular Medicine and Engineering, IEEE NANOMED. 2010. p. 76-81.

11. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980-1002.

12. Viertio-Oja H, Maja V, Sárkelá M, Talja P, Tenkanen N, Tolvanen-Laakso H, et al. Description of the EntropyTM algorithm as applied in the Datex-Ohmeda S/5TM Entropy Module. Acta Anaesthesiol Scand. 2004;48:154-61.

13. Schmidt GN, Bischoff P, Standl T, Hellstern A, Teuber O, Schulte Esch J. Comparative evaluation of the Datex-Ohmeda S/5 Entropy Module and the Bispectral Index monitor during propofol-remifentanil anesthesia. Anesthesiology. 2004;101:1283-90.

14. Hasak L, Wujtewicz M, Owczuk R. Assessment of the depth of anaesthesia during inhalational and intravenous induction of general anaesthesia. Anesthesiol Intensive Ther. 2014;46:274-9.

15. Wheeler P, Hoffman WE, Baughman VL, Koenig H. Response entropy increases during painful stimulation. J Neurosurg Anesthesiol. 2005;17:86-90.

16. The MathWorks Inc. Statistics and Machine Learning Toolbox TM User's Guide r2015a;2015:7916 p.

17. Wellek S, Blettner M. On the proper use of the crossover design in clinical trials. Dtsch Arztebl Int. 2012;109:276-81.

18. Siyasinghe NM, Sooriyarachchi MR. Guidelines for calculating sample size in 2 x 2 crossover trials: a simulation study. J Natl Sci Found Sri Lanka. 2011;39:77-89.

19. Walpole RE, Myers RH, Myers SL. In: Roig PE, Bonilla J, Ávalos Ó, editors. Probabilidad y estadística para ingenieros. 6th ed. Prentice-Hall Hispanoamericana SA; 1999. p. 752.

20. Struys MM, De Smet T, Depoorter B, Vesichelen LF, Mortier EP, Dumortier FJ, et al. Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. Anesthesiology. 2000;92:399-406.

21. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a "Diprifusor" TCI system. Anaesthesia. 1998;53 Suppl. 1:61-7.
How to Cite
1.
Mosquera-Dussán OL, Cárdenas A, Botero-Rosas DA, Yepes A, Oliveros H, Hena R, Ríos F. Randomized cross-over clinical trial comparing two pharmacokinetic models of propofol using entropy indices. Colomb. J. Anesthesiol. [Internet]. 2016Jul.1 [cited 2021May10];44(3):193-00. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/367

Downloads

Download data is not yet available.
Published
2016-07-01
How to Cite
1.
Mosquera-Dussán OL, Cárdenas A, Botero-Rosas DA, Yepes A, Oliveros H, Hena R, Ríos F. Randomized cross-over clinical trial comparing two pharmacokinetic models of propofol using entropy indices. Colomb. J. Anesthesiol. [Internet]. 2016Jul.1 [cited 2021May10];44(3):193-00. Available from: https://www.revcolanest.com.co/index.php/rca/article/view/367
Section
Original

More on this topic